3. Az elektronkorreláció és a bázis függvények hatása a disziloxán hajlítási potenciális energiagörbéjére

- I. Csonka, G. I., Erdősy, M. and Réffy, J., Structure of Disiloxane: Semiempirical and post-Hartree-Fock study, J. Comp. Chem. **15** (1994) 925.
- **II. Csonka**, G. I and Réffy, J., Density-functional study of the equilibrium geometry and Si-O-Si potential energy curve of disiloxane, Chem. Phys. Lett. **229** (1994) 191.
- V. Csonka, G. I. and Réffy, J., The failure of the MO-based theoretical explanations for bending of disiloxane, J. Mol. Struct. (Theochem), **332** (1995) 187.

3.1. Bevezetés

A disziloxán szerkezetének meghatározása kí sérletileg és elméletileg egyaránt nehéznek bizonyult. A kí sérleti nehézségek fő forrása két nagy amplitúdójú mozgás, a SiH₃ csoportok forgása és az Si-O-Si kötés behajlása. A 3.1. táblázatban foglaltam össze a rendelkezésre áló, egymásnak ellentmondó adatokat. Kutatásunk célja annak eldöntése volt, hogy mennyi a valóságos eredmény és milyen számí tási módszerrel lehet azt reprodukáni.

3.1. táblázat.

A hajlítási energiagát (kcal/mol), az Si-O-Si kötésszög (°) és az Si-O kötéstávolság (Å) disziloxánban az irodalmi adatok szerint.

Módszer/bázis	Gátmagasság	<(Si-O-Si)	r(Si - O)	Hivatkozás
Kí sérlet (IR+Raman)	0.00	180.0		1
Kí sérlet (ED)	-	144.1	1.634	2
Kí sérlet (Raman)	1.40			3
Kí sérlet (Raman)	0.32	149 ± 2		4
Kí sérlet (Raman)	0.30	151.2		5
Kí sérlet (X-Ray)	-	$144.1\ \pm 0.3$		6
RHF/STO-3G		124.0	1.658	7
RHF/4-31G	0.00	180.0		7
RHF/6-31G(d)	0.00	170.1	1.626	8
MP2/6-31G(d)//RHF/6-31G(d)	0.41	145.0		8
MP3/6-31G(d)//RHF/6-31G(d)	0.38	145.0		8
CPFa	0.24	150.9		9
RHF/TZ(2d)	0.66	147.3	1.621	10
CISD/TZ(2d)	1.02	143.8	1.631	10
MP2/6-31G(d)	0.5	143.6	1.660	11
MP2/6-311G(d,p)	0.1	156.6	1.641	11
MP2/6-311G(2d,p)	1.2	139.8	1.647	11
RHF/CEP-31G	0.00	180.0	1.674	12
RHF/CEP-31G(d)	-	143.4	1.646	12

^a részben optimalizált geometria, nem standard bázissal számítva.

A 3.1. táblázat adataiból az a következtetés vonható le, hogy a korábbi számí tások alapján nem lehet dönteni a háromféle kí sérleti eredmény között. A disziloxán molekulára vonatkozóan megálapí tható, hogy az Si-O-Si kötés lineárissá alakí tásához szükséges számí tott energia érzékeny az alkalmazott bázis polarizációs függvényeire. A jó minőségû, 6-311G(d) vagy TZ(d)

tripla-zéta bázist egyetlen d pálya készlettel (amely 6 egyedi pályából ál) kiegészí tve nagyon alacsony, vagy nulla gátat kapunk. Ha 6-311G(2d) bázissal végezzük a számí tásokat, a gámagasság jelentősen megnő.

3.2. Eredmények

Az átalunk végzett nagyon pontosnak tekinthető CCSD(T)/6-311G(d) számí tások szerint a gámagasság 0,23 kcal/mol (0,96 kJ/mol), a CCSD(T)/6-311G(2d) számí tások szerint a gámagasság 1,36 kcal/mol (5,69 kJ/mol) (3.2. táblázat, az I. és II. közlemény alapján). A gámagasság-növekedés módszer és bázis független, ami arra utal, hogy kizárólag a polarizációs függvények a felelősek a jelenségért. Számí tásaimhoz a 3.1. Ábrán láható Cs szimmetriájú konformációt hasznátam.

3.1. ábra. A számí tásokhoz használt C_s szimmetriájú disziloxán konformáció. Ht jelöli a szimmetriasí kban lévő hidrogénatomokat.

Az SiH₃ csoport forgatásakor ennek a konformernek a legalacsonyabb az energiáa. Megjegyzendő, hogy a lineáris szerkezet esetén az SiH₃ csoportok forgásának energia gája gyakorlatilag nulla, mí g az Si-O-Si kötés behajlí tásakor a 3.1. Ábrán látható konformáció válik a legstabilabbá Minél kisebb az Si-O-Si kötésszög, anná nagyobb lesz a forgás gája.

3.2. táblázat.

A disziloxán legalacsonyabb energiájú és lineáris alakjának különböző módszerekkel szání tott teljes energiája (Hartree), az energiagá magassága (kcal/mol) és a szání táshoz hasznát geometria főbb jellemzői (° és Å).

Módszer/bázis	Teljes energia	Energiagát	<(Si-O-Si)	r(Si - O)	r(Si - Ht)	r(Si - H)
HF/6-311G(d)	-656.32089	0.00	180.0	1.6201	1.4732	
B3-P86/6-311G(d)	-658.71040		170.0	1.6349	1.4836	1.4853
B3-P86/6-311G(d)	-658.71036	0.03	180.0	1.6339	1.4845	
B-P86/6-311G(d)	-657.95679		160.0	1.6534	1.4954	1.4989
B-P86/6-311G(d)	-657.95661	0.11	180.0	1.6488	1.4977	
MP2/6-311G(d)	-656.67361		154.0	1.6436	1.4773	1.4811
MP2/6-311G(d)	-656.67336	0.16	180.0	1.6363	1.4797	
CCSD(T)/6-311G(d)a	-656.71991		155.0			
CCSD(T)/6-311G(d)a	-656.71955	0.23	180.0			
HF/6-311G(2d)	-656.32949		147.0	1.6216	1.4749	1.4789
HF/6-311G(2d)	-656.32837	0.70	180.0	1.6135	1.4775	
B3-P86/6-311G(2d)	-658.71998		140.2	1.6420	1.4820	1.4870
B3-P86/6-311G(2d)	-658.71817	1.13	180.0	1.6286	1.4850	
B-P86/6-311G(2d) ^b	-657.96661		138.1	1.6601	1.4935	1.4989
B-P86/6-311G(2d)b	-657.96447	1.34	180.0	1.6439	1.4972	

3.2. tablazat folytatasa.						
Módszer/bázis	Teljes energia	Energiagát	<(Si-O-Si)	r(Si - O)	r(Si - Ht)	r(Si - H)
MP2/6-311G(2d) ^a	-656.71466		140.0			
MP2/6-311G(2d) ^a	-656.71269	1.24	180.0			
CCSD(T)/6-311G(2d) ^a	-656.76323		140.0			
CCSD(T)/6-311G(2d) ^a	-656.76106	1.36	180.0			
HF/6-311+G(3d)	-656.33916		147.7	1.6223	1.4700	1.4735
HF/6-311+G(3d)	-656.33807	0.68	180.0	1.6134	1.4721	
B-P86/6-311+G(3d)	-657.97516		138.7	1.6607	1.4907	1.4958
B-P86/6-311+G(3d)	-657.97306	1.32	180.0	1.6434	1.4939	
MP2/6-311+G(3d) ^a	-656.73302		140.0			
MP2/6-311+G(3d) ^a	-656.73106	1.23	180.0			
HF/6-311+G(3df)	-656.35304		167.4	1.6112	1.4731	1.4744
HF/6-311+G(3df)	-656.35299	0.03	180.0	1.6089	1.4740	
B3-P86/6-311+G(3df)	-658.73689		149.4	1.6334	1.4798	1.4835
B3-P86/6-311+G(3df)	-658.73646	0.27	180.0	1.6245	1.4822	
B-LYP/6-311+G(3df)	-657.90059		149.2	1.6540	1.4873	1.4915
B-LYP/6-311+G(3df)	-657.90008	0.33	180.0	1.6438	1.4901	
B-P86/6-311+G(3df)	-657.98208		144.5	1.6532	1.4914	1.4961
B-P86/6-311+G(3df)	-657.98130	0.49	180.0	1.6398	1.4945	
MP2/6-311+G(3df) ^a	-656.79396		145.0			
MP2/6-311+G(3df) ^a	-656.79317	0.50	180.0			

^a Az MP2/6-311G(d) módszerrel optimalizált geometriát használva.

b A geometriát finom ráccsal újra optimalizáltam (Int=FineGrid), hogy meggyőződhessünk az eredmény stabilitásáról.

A 3.2. táblázat adatai alapján láható, hogy további d, valamint diffúz pályák hozzádása nem vátoztatja meg lényegesen a gámagasságot, viszont az f pávák hozzádása lényegesen csökkenti azt.

A polarizációs függvények hatását az Si-O-Si kötésszög behajlí tásának potenciális energia görbéjére a 3.2., 3.3. és 3.4. Ávrán mutatom be (az ávrák a I és II közleményekben jelentek meg).

A 3.2. táblázatban és a 3.2., 3.3. és 3.4. Áprán bemutatott módszerek mellett még vizsgátam a CCD, CCSD és CISD módszereket is [I]. Megálapí tható hogy az MP2 módszerrel szání tott potenciális energiagörbe az előbbi 3 módszerrel szání tott energiagörbénél közelebb esik a legpontosabb CCSD(T) módszerrel számí tott potenciális energiagörbéhez (ezek az ábrák a I. publikációban taláhatók). Ezért a nagyon nagy bázissal végzett számí tások esetében, amikor a CCSD(T) számí tások rendkí vül költségesek lennének, az MP2 eredményeket hasznátam referenciaként.

3.2. ábra. Az Si-O-Si kötés behajlí tásának potenciális energiagörbéje a 6-311G(d) bázissal számí tva. A HF, a B-P86, a B3-P86 geometriákat rögzí tett Si-O-Si kötésszögek mellett teljesen optimalizátam. A CCSD(T) energiákat a megfelelő MP2/6-311G(d) optimalizát geometriák alapján számí tottam. A HF görbét -0,27 kcal/mol-lal elcsúsztattam.

3.3 ábra. Az Si-O-Si kötés behajlí tásának potenciális energiagörbéje a 6-311G(2d) bázissal számí tva. A HF, a B-P86, a B3-P86 geometriákat rögzí tett Si-O-Si kötésszögek mellett teljesen optimalizátam. A CCSD(T) energiákat a megfelelő MP2/6-311G(d) optimalizát geometriák alapján számí tottam. A B-P86 görbét 0,05 kcal/mol-lal elcsúsztattam.

A 3.3. és 3.4. Ávrákon láható, hogy több polarizációs függvény használata esetén az MP2 és a B-P86 görbék közel esnek egymához, és a 3.3. Ávrán láható, hogy a B-P86 görbe közelí ti jobban a CCSD(T) potenciális energiagörbét. Legjobb minőségû számí tásaim alapján megállapí tható, hogy az Si-O-Si kötés behajlí tásának helyes leí rásához szükség van az f polarizációs függvények használatára és az elektron korreláció figyelembe vételére. Eredményeim alapján az Si-O-Si kötésszög nem lineáris és a 0,30 kcal/mol kí sérleti érték megerősí thető [II].

A 3.2., 3.3., és 3.4. ábra alapján megálapí tható, hogy az egyensúlyi Si-O-Si kötésszög hasonló módon függ a bázistól mint a gámagasság. Magas gá esetén kisebb, alacsony gá esetén nagyobb kötésszöget kapunk.

3.4. ábra. Az Si-O-Si kötés behajlí tásának potenciális energiagörbéje a 6-311+G(3d) és 6-311+G(3df) bázissal számí tva. A HF és a B-P86 geometriákat rögzí tett Si-O-Si kötésszögek mellett teljesen optimalizátam. A CCSD(T) energiákat a megfelelő MP2/6-311G(d) optimalizát geometriák alapján szání tottam. A HF/+G(3d) görbét 0,10 kcal/mol-lal, a B-P86/+G(3d) görbét 0,05 kcal/mol-lal, a B3-P86/+G(3d) görbét -0,05 kcal/mol-lal, a HF/+G(3df) görbét -0,32 kcal/mol-lal elcsúsztattam.

Az, hogy a disziloxánban erősen függ az egyensúlyi kötésszög az alkalmazott bázistól, lehetőséget nyújtott egy korábbi feltételezés alkalmazhatóságának ellenőrzésére. Shambayati és mtsai⁸ azzal magyarázták a disziloxán dimetil-éterhez viszonyí tott nagyobb oxigén centrumú kötésszögét, hogy a legfelső betöltött molekulapályák hajlí táskor fellépő stabilizáló hatása a disziloxán esetében jóval kisebb, és ezt sikeresen kompenzája a b₂ szimmetriájú HOMO-2 pálya destabilizáló hatása.

Eredményeim alapján megálapí tható, hogy

 Az Si-O-Si hajlí tási gátmagasság a disziloxánban érzékenyen függ az alkalmazott polarizációs függvények számától. Tripla-zéta, 6-311G bázis egy d polarizációs függvénykészlettel nagyon alacsony (CCSD(T) módszerrel számí tva 0,23 kcal/mol), vagy nulla (HF módszerrel számí tva), két d polarizációs függvénykészlettel magas (CCSD(T) módszerrel számí tva 1,36 kcal/mol), három d és egy f polarizációs függvénykészlettel ismét alacsony hajlí tási gáat ad (0,3-0,4 kcal/mol ACM, GGA-DFT és MP2 módszerekkel számí tva). Számí tásaim a 0,32 kcal/mol kí sérleti hajlí tási gátmagasságot támasztják alá A DFT és az MP2 eredmények jól egyeznek a CCSD(T) eredményekkel, ezért megbí zhatóak. A CEP bázis valamennyi módszerrel és egy d polarizációs függvénykészlettel is magas gáta ad, í gy nem ajánlható Si-O-Si hajlí tás tanulmányozására [I,II].

- Az Si-O-Si egyensúlyi kötésszög a gámagassághoz hasonlóan függ a bázistól. Tripla zéta, 6-311G bázis egy d polarizációs függvénykészlettel 155° fölötti, két d polarizációs függvénykészlettel 140° alatti szöget eredményez. Három d és egy f polarizációs függvénykészlettel a kí sérleti 145-150°-kal jól egyező eredményt kapunk. Átalában megálapí tható, hogy magasabb gámagasság kisebb egyensúlyi kötésszöggel jár együtt [I,II].
- Az Si-O kötéstávolság és az Si-O-Si kötésszög közötti szilikát kristályok alapján felállí tott összefüggés nem egyezik a számí tások által gáz fázisban megjósolt összefüggéssel [I].
- Az ab iní ció elektrosztatikus pontenciál alapján származtatott töltések konvergenciát mutattak. Az ú.n. CHELPG algoritmus szerint számí tott töltések az Si-O-Si kötésszög csökkenésével nõnek. A Mulliken töltések nem mutattak konvergenciát, használatuk az eredmények alapján nem ajánlatos [I].
- A hexametil-disziloxánra végzett számí tásaim szerint ebben a molekulában az Si-O távolság 1 pm-rel hosszabb, az Si-O-Si kötésszög nagyobb és az Si-O-Si hajlí tási gámagasság kisebb, mint a disziloxánban. A CHELPG, BMK és NPA (természetes populációs analí zis) eredmények szerint az Si-O kötés hexametil-disziloxánban erősebben ionos jellegû mint a disziloxánban [I].
- Az az elmélet, amely szerint disziloxánban a legfelső molekulapályák energiájának az Si-O-Si kötésszög behajlí tásakor bekövetkező megváltozása ad az alacsony energiagára és nagy kötésszögére magyarázatot, nem bizonyult érvényesnek. Számí tásaink szerint a hajlí tási energiagát magassága és az Si-O-Si kötésszög nagyon erősen függ a bázistól, de ezzel szemben a pályaenergiák Si-O-Si kötésszög behajlí tásakor bekövetkező megváltozása az alkalmazott bázistól független [V].

Irodalomjegyzék

⁷ Sauer, J.; Zurawski, B. Chem. Phys. Lett. **65**, 587 (1979).

¹ Lord, R. C.; Robinson, D. W.; Schumb, W. C. J. Am. Chem. Soc. **78**, 1327 (1957).

² Almenningen, A.; Bastiansen, O.; Ewing, V.; Hedberg, K.; Tretteberg, M. Acta. Shem. Scand. **17**, 2455 (1963).

³ Aronson, J. R.; Lord, R. C.; Robinson, D. W. J. Chem. Phys. **33**, 1004 (1960).

⁴ J. R. Durig M. J. Flanagan, V. F. Kalasinsky, J. Chem. Phys. **66**, 2775 (1977).

⁵ Koput, J.; Wierzbicki, A. J. Mol. Specrosc. **99**, 116 (1983).

⁶ M. J Barrow, E. A. Ebsworth, M. M. Harding, *Acta Crytallogr.* **B35**, 2093 (1979).

⁸ S. Shambayati, J. F. Blake, Wierschke, S. G. Jorgensen, W. L.; Schreiber, S. L., *J. Am. Chem Soc.* **112**, 697 (1990).

⁹ J. Koput, Chem. Phys. **148**, 299 (1990).

¹⁰ Nicholas, J. B.; Winans, R. E.; Harrison, R. J.; Iton, L. E.; Curtiss, L. A.; Hopfinger, A. J., *J. Phys. Chem.* **96**, 7958 (1992).

¹¹ B. T. Luke, J. Phys. Chem. **97**, 7505 (1993).

¹² C. W. Earley, *J. Comp. Chem.* **14**, 216 (1993).