5. Az elektronkorreláció szerepe a metil-amin nagy amplitúdójú mozgásainak leírásában. DFT és poszt Hartree-Fock számítások

- VI. **Csonka**, G. I. and Sztraka L., Density functional and post Hartree-Fock equilibrium geometries, potential energy surface and vibrational frequencies for methylamine, Chem. Phys. Lett. **233** (1995) 611.
- XIX. Sztraka, L., Csonka, G. I., Flexible ab initio geometry of methylamine and its internal rotation, J. Mol. Struct. 410-411 (1997) 387.

5.1. Bevezetés

A metil-amin potenciálfelületét és inverziós energiagátját a korai közleményekben az alkalmazott egyszerűsítések következtében és a kísérleti adatok pontatlansága miatt csak bizonytalanul határozták meg.^{1,2} Krêglewski³ a feladatot a Hougen-Bunker-Johns típusú⁴ félmerev inverziós - belső forgási - forgási Hamiltonnal próbálta megoldani. Belátva a félmerev modellből fakadó közelítések hiányosságait, később Krêglewski egy nem merev modellt vezetett be,⁵ amelyben megengedte, hogy a kötéstávolságok és kötésszögek változzanak az inverzió koordinátája függvényében. A kötéstávolságok és kötésszögek változását azonban elméletileg nem alátámasztott egyszerű négyzetes függvényekkel írta le. Sztraka Lajos egy korábbi munkája⁶ azt mutatta, hogy az előbb említett nem merev modell segítségével nem lehet jó eredményeket kapni. Ezért a metil-amin geometriai paramétereinek a hiperfelületen történő elmozdulástól való függését GGA-DFT számításokkal meghatároztam. Ez alapján az effektív forgási állandók meghatározhatók és a megfelelő kísérleti adatokkal összevethetők.

A metil-amin HF limit geometriája ismert volt,⁷ ami azt mutatta, hogy a HF módszer jól ismert hibája miatt az egyensúlyi C-N kötéstávolság túl rövid (145,34 pm).⁸ Ezért feltétlenül szükség volt az elektronkorreláció figyelembevételére. A C-N kötés hosszára ellentmondó kísérleti adatok álltak rendelkezésre, de a legújabb mikrohullámú (MW)⁹ és a rezgés szempontjából korrigált elektrondiffrakciós (ED)¹⁰ (147.1(3) pm) adatok jó egyezést mutatnak. Ezek a korábbi ED adatot (146.7(2) pm)¹¹ elavulttá tették. A forgási és az inverziós gátmagasságra vonatkozó korábbi kísérleti adatok kisebbek (684 és1688 cm⁻¹),^{12,13} míg az újabb adatok valamivel nagyobbak (718 és1943 cm⁻¹).⁵

5.1 ábra. A metil-amin minimális energiájú konformációja és fedő állású átmeneti állapota. τ jelöli a C-N kötés és az NH₂ sík közötti szöget. H_a és H_s jelöli a nitrogén elektronpárjához képest anti, illetve szin pozíciót.

5.2. Eredmények

5 1 táblázat A metil-amin Ca	szimmetriájú lokáli	s minimumának	számított és	kísérleti adatai
$S.1$ tabiazat. A meth-amin C_{S}	Szinniculaju lokan	5 mmmumanak	szamitott cs	Rischett auatal.

Geometriai	MP2/	CCD/	B3P86/	BP86/	Kísérleti	Kísérleti
paraméter ^a	6-311G(d)	6-311G(d)	6-311G(d)	6-311G(d)	MW^b	ED+MW ^c
r (CN)	146.41	146.57	145.62	147.19	147.14	147.1(3)
r (CH _{a)}	109.90	110.18	110.16	111.20	109.87	110.1(3)
r (CH)	109.15	109.46	109.28	110.20	109.87	110.1(3)
r (NH)	101.18	101.31	101.34	102.47	100.96	101.9(6)
< NCH _a	115.24	115.09	115.76	116.13	113.90	
< NCH	108.99	109.05	109.29	109.11		
< HCH	107.23	107.23	106.76	106.78	108.00	108.4(5)
< CNH	109.68	109.58	110.09	109.35	110.27	111.5(7)
< HNH	106.87	106.66	106.43	105.75	107.13	106.0(6)
$< \epsilon^{d}$	4.17	4.03	4.31	4.68	2.93	2.97
$< \tau e$	55.58	55.85	55.00	56.71	54.32	
Energia ^f	-95.54570	-95.57095	-96.20363	-95.87372		

^a r - kötéstávolság (pm), < - kötés szög (°), H_a anti pozíció a nitrogén magános párjához képest.

^b 10. hivatkozás. ^c 11. hivatkozás.

A számított $\varepsilon = 2^*(NCH_t-NCH)/3$. A kísérleti ε értéke a metilcsoport szimmetriatengelye és a C-N kötés hajlásszöge. ^e τ az NH₂ szögfelezője és a CN kötés szöge (lásd 5.1-es ábra). ^f Teljes energia (Hartree).

- A B-P86 és B3P86 DFT módszerek metil-aminnal kapcsolatos teljesítőképességének vizsgálata érdekében 3 kiválasztott konformáció, a lokális minimum (0 negatív frekvencia), a fedő állású forgási átmeneti állapot (1 negatív frekvencia) és a forgási inverziós átmeneti állapot (2 negatív frekvencia) optimalizált geometriáját számítottuk ki, és összehasonlítottuk MP2 valamint CCD optimalizált geometriával tripla zéta polarizált bázison. A minimum esetében a rendelkezésre álló kísérleti geometriát is felhasználtuk az összehasonlításhoz (lásd 5.1. táblázat). A kísérleti C-N kötéstávolságot legjobban a BP86 módszer közelíti meg, míg a B3P86 módszer nagyon jó egyezést mutat az MP2 és CCD eredményekkel. Kötéstávolságokra az alábbi összefüggés érvényes: r(B3P86) < r(MP2) < r(CCD) < r(BP86), a DFT módszerekkel számított kötéstávolságok közrefogják a jó minőségû hagyományos módszerekkel számított kötéstávolságokat. A számítások szerint nem szükséges a hidrogénatomokra p polarizációs függvényt helyezni, mivel az egyensúlyi geometriát azok csak elhanyagolható mértékben befolyásolják (a C-H és N-H kötések 0,1 pm-rel megnyúlnak, a H-N-H kötésszög 1 fokkal csökken). Viszont a nehéz atomokon szükséges a d polarizációs függvény jelenléte. A DFT számítások normál és finom integrálási rács alkalmazásakor ugyanazt a geometriát adták.
- Az egyensúlyi geometria változása mellett ellenőriztük azt is, hogy a CCSD(T) és a DFT módszer mennyire képes 6-311G(d) bázis használatakor a belső forgási és inverziós gát magasságát megadni ill. hogyan változik a gátmagasság a bázis növelésekor. A számított belső forgási gát 868, 820, 810 és 688 cm⁻¹ CCSD(T), BP86, B3P86 és BP86/6-311+G(2df) módszerekkel számítva. A két kísérleti érték 684 és 718 cm^{-1,5} Az inverziós gát

2364, 1957, 1841 és 1697 cm⁻¹ CCSD(T), BP86, B3P86 és BP86/6-311+G(2df) módszerekkel számítva. A két kísérleti érték 1688 és 1943 cm⁻¹.⁵ Ez alapján látható, hogy a BP86 módszerrel számított magas energiagátak a bázis hibájából adódnak és ez a módszer nagyon nagy bázissal képes a belső forgási és inverziós energiagátat jól reprodukálni. Az ammónia nagyfelbontású spektrumának analízise azt mutatja, hogy az ú.n. effektív zérus pont energiával korrigált gátmagasság 175 cm⁻¹ -gyel magasabb mint a korrigálatlan.¹⁴ Ez alapján a metil-aminban is a számított gátnak alacsonyabbnak kell lennie, mint a mértnek. Ezt a kritériumot a BP86/6-311+G(2df) módszerrel végzett számítások teljesítik, ha az újabb, magasabb kísérleti értéket⁵ vesszük figyelembe.

Szimmetria	Rezgési mód	HF/	MP2/	BP86/	Kísérlet ^a
		6-31G(d)	6-311G(d)	6-311G(d)	
a'	NH ₂ s-stretch	3730 (1)	3559 (1)	3372 (7)	3360 +
	CH3 d-stretch	3245 (58)	3135 (40)	2984 (44)	2962 ++++++
	CH ₃ s-stretch	3158 (99)	3033 (80)	2867 (122)	2820 ++++++
	NH ₂ scis.	1841 (29)	1750 (36)	1672 (30)	1623 ++++
	CH3 d-deform	1648 (7)	1542 (8)	1466 (9)	1474 ++++
	CH3 s-deform	1608 (4)	1499 (2)	1421 (2)	1430 +++
	CH3 rock	1289 (19)	1213 (13)	1149 (7)	1130 +++
	CN stretch	1148 (18)	1095 (8)	1035 (5)	1044 ++++
	NH ₂ wag.	947 (185)	913 (178)	850 (173)	780 ++++++
a"	NH ₂ a-stretch	3813 (0)	3654 (0)	3451 (3)	3424 +
	CH3 d-stretch	3282 (51)	3179 (32)	3023 (41)	2985 ++++
	CH3 d-deform	1665 (1)	1562 (1)	1489 (4)	1485.
	NH ₂ twist.	1497 (0)	1393 (0)	1332 (0)	1335 . ^b
	CH3 rock	1052 (0)	1000 (0)	962 (0)	972 . ^b
	torzió	341 (47)	341 (45)	337 (44)	264 ++++
	Zéruspont	15124	14433	13706	13544
	energia				

5.2 táblázat. A metil-amin számított és mért IR hullámszámai (intenzitásai) zéruspont rezgési energiája.

^a 15. hivatkozás. A kísérleti intenzitásokat + jelekkel érzékeltetjük, az alacsony intenzitású csúcsokat pont jelöli. Az NH₂ wag. anharmonikus és inverziós felhasadást mutat.

^b 16. hivatkozás.

 Az energia hiperfelület görbületének helyes leírásáról a minimum közelében a számított és a mért infravörös spektrum összehasonlításával győződhetünk meg. Itt tekintettel kell lennünk arra, hogy a számított frekvenciák harmonikusak és a mért frekvenciákkal csak az anharmonikus korrekciók után vethetők közvetlenül össze. A kísérleti spektrumban a két nagy amplitúdójú mozgáshoz az inverzióhoz (NH₂ wag.) és a belső rotációhoz tartozó torzió mutat jelentős anharmonicitást, ami a rezgések jellegéből következik. Ebben a két esetben nem várható a kísérleti és a számított frekvenciák egyezése. Különben a BP86/6-311G(d) frekvenciák lényegesen jobban egyeznek a kísérleti értékekkel, mint az MP2 frekvenciák. A közölt értékek nem tartalmaznak semmilyen skálázást.

 A B-P86/6-311G(d) módszerrel számított jó egyensúlyi és átmeneti geometria, valamint az energia hiperfelület jó leírása megalapozta, hogy ezt a módszert válasszuk a teljes belső forgási - inverziós energiafelület és a geometriai paraméterek változásának meghatározásához. A geometriai paraméterek belső rotációtól és inverziótól való függése megmutatta, hogy a nagyfelbontású spektrumok tárgyalására használt korábbi modellek nagyon durva elhanyagolásokat tartalmaztak. Az egyik, gyakran alkalmazott közelítés a metilcsoport feltételezett C_{3v} szimmetriája egyáltalán nem érvényesül, a metilcsoporton belüli kötésszögek és kötéstávolságok jelentősen eltérnek egymástól. A geometriai paraméter függvények az esetek nagy részében nem négyzetes függést mutatnak, annál bonyolultabb függvények szerint változnak.

Konstans	Kísérleti ^a	Számított ^b	Számított [°]	Különbség
		(csak	(belsõ	
		inverzió)	forgás is)	
R _J (MHz)	22169.39	22159.96	22169.04	-0,35
R _k (MHz)	80986.4	81327.7	80986.39	0,01
$\Delta_{\rm as}({\rm MHz})$	460.51	464.26	460.25	-0,26
ρ	0.64973°	0.64976		

5.3 táblázat. A metil-amin flexibilis geometriája alapján számított és mért forgási koefficiensek.

a 16. hivatkozás.

b [VI]

- c [XIX] A kísérleti adatokra illesztve.
- A BP86 módszerrel számított geometriai paraméterektől függő függvényekből kiszámíthatók a rotációs együttható függvények, majd ezeket az inverzió és a belső rotáció szerint átlagoljuk. A rotációs együttható függvények meghatározása és az átlagolás Sztraka Lajos munkája volt. Végül ezeket az átlagokat kell a kísérlettel összehasonlítani. Az első tanulmányunkban csak a geometria inverziótól való függését tanulmányoztuk a belső forgás nélkül [VI]. A következő munkánkban megállapítottuk a geometriai paraméterek belső forgástól való függését is [XIX]. A metil-amin alapállapotát jellemző R_J, R_k, Δ_{as} és ρ effektív rotációs együtthatók a kísérleti nagyfelbontású spektrumokból mint inverziós és belső forgási átlagok meghatározhatók.^{17,18} Az R_J-t a Hamilton mátrix főátlójában lévő J(J+1)-t tartalmazó tagból, R_k-t a K² tagból és Δ_{as}-t a Hamilton mátrix nem diagonális elemeiből lehet meghatározni. ρ az energiaszintek belső forgásból adódó periodikusságát írja le. Az 5.3 táblázatban közölt eredmények egyértelmûen mutatják, hogy a geometriai paraméterek belső forgástól való függésének figyelembevételével a számítás a kísérlethez jól illeszthető.

Irodalomjegyzék

- 1 T. Itoh, J. Phys Soc. Japan, 11 (1956) 264.
- 2 M. Tsuboi, A. Y. Hirakawa, K. Tamagake, Proc. Japan Acad. 42 (1966) 795.
- 3 M. Krêglewski, J. Mol. Spectr. 72 (1978) 1.
- 4 J. T. Hougen, P. E. Bunker, J. W. C. Johns, J. Mol. Spectr. 34 (1970) 136.
- 5 M. Krêglewski, J. Mol. Spectr. 133 (1989) 10.
- 6 L. Sztraka, Acta Chim. Hung. 124 (1987) 865.
- 7 Y. Xie, G. E. Scuseira, B. F. Yates, Y. Yamaguchi, H. F. Schaefer, J. Am. Chem. Soc. 111 (1989) 5181.
- 8 W. J. Hehre, J. A. Pople, P. v. R. Schleyer, L. Radom, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986.
- 9 K. Takagi, T. Kojima, J. Phys. Soc. Japan, 30 (1971) 1145.
- 10 T. Ijima, Bull. Chem. Soc. Japan, 59 (1986) 853.
- 11 H. K. Higginbotham, L. S. Bartell, J. Chem. Phys. 42 (1965) 1131.
- 12 C. Bergelot, V. Stern, N. Goff, J. Kachmarsky, K. D. Möller, J. Mol. Spect. 92 (1982) 91.
- 13 M. Tsuboi, A. Y. Hirakawa, K. Tamagake, J. Mol. Spect. 22 (1967) 272.
- 14 V.Spirko: J. Mol. Spect. 101.(1983) 30.
- 15 A. P. Gray, R. C. Lord, J. Chem. Phys. 26 (1957) 690.
- 16 Y. Hamada, N. Tanaka, Y. Sugawara, A. Y. Hirakawa M. Tsuboi, S. Kato, K. Morokuma, J. Mol. Spect. 96 (1982) 313.
- 17 N.Ohashi, K.Takagi, J.T.Hougen, W.B.Olson, W.J.Lafferty: J. Mol. Spect. 12 (1987) 443.
- 18 M.Krêglewski, G.Wlodarczak: J. Mol. Spect. 156 (1992) 383.