7. Szilatránok: az elektronkorreláció szerepe az intramolekuláris Si-N kölcsönhatás leírásában és a szilatránváz geometriai paramétereinek függése az Si-N távolságtól

- XI. **Csonka**, G. I. and Hencsei, P., Prediction of geometrical changes in silatranes: an ab initio molecular orbital and density functional theory study, J. Mol. Struct. (Theochem), **362** (1996) 199.
- XII. Csonka, G. I. and Hencsei, P., The Structure of 1-Chlorosilatrane. An Ab Initio Molecular Orbital and a Density Functional Theory Study, J. Comput. Chem. 17 (1996) 767.

7.1. Bevezetés

A szilatránokkal (RSi(OCH₂CH₂)₃N, 1-organil-2,8,9-trioxa-5-aza-1-szilatriciklo [3.3.3.0^{1.5}] undekánok) kapcsolatos korábbi kutatások félempírikus^{1,2,3} HF^{4,5} szinten feltárták ennek a Az vegyületcsaládnak a fõbb tulajdonságait. eredmények alapján egyértelmûen bebizonyosodott, hogy az Si-N távolságot az R-szubsztituens minősége döntő módon befolyásolja (v.ö. 7.1. táblázat). Az Si-N távolság változásával az egész váz komplex módon változik. Az eredmények alapján az Si-N kölcsönhatás potenciális energiagörbéje lapos, ami azt jelzi, hogy nagyon kis energia elegendő a molekulaváz torzításához. Ez egyértelműen látható a gázfázisú fluor⁶ és metil⁷ szubsztituált szilatránok elektrondiffrakciós (ED) és a szilárdfázisú röntgendiffrakciós^{8,9}, adatainak összehasonlításából (7.1. táblázat). A jelentős eltérés annak tulajdonítható, hogy az Si-N kölcsönhatás könnyû deformálhatósága miatt a kristálytér erők eltorzítják a molekulát. Ez alapján levonható az a következtetés, hogy az elektronkorreláció figyelembevétele ebben a molekulacsaládban valószínűleg nélkülözhetetlen. A 7.1. táblázatból látható, hogy az 1-klórszilatrán szilárd fázisú röntgendiffrakciós geometriája ismert, ¹⁰ de a gázfázisú ED geometriáját még nem mérték meg, ezért ennek a molekulának a geometriáját az elektronkorrelációt is figyelembevéve meghatároztam. Megjegyzendő, hogy az ED-val mért r_g és a számított r_e szerkezetek közvetlenül nem hasonlíthatók össze, mivel az r_g a termikus vibrációk távolság átlaga, ezért általában az rg távolságok néhány pm-rel nagyobbak, mint a számított r_e távolságok ($r_g = r_e + \langle \Delta r \rangle_T$).

7.2. Eredmények

• •		Riberieu Di	11 tuvoisug (pi	ii) SZUUSZUUU	it szilatiano
	Szubsztituens (R)	Cl	F	Me	Н
_	HF/6-31G(d)	257,3	255,6	274,5	265,7
	MP2/6-31G(d)				231,4
	MP2/CEP-31G(d)	226,2	224,1		231,2
	B3P/6-31G(d5)	230,5	231,7	247,3	233,9
	BP/6-31G(d5)	230,8	233,1	244,8	232,2
	ED (rg)	-	$232,4 \pm 1,4^{6}$	$245,3(47)^7$	
	Röntgen (e.s.d.)	202,310	$204,2(1)^8$	$217,5(4)^9$	

7.1 táblázat. Számított és kísérleti Si-N távolság (pm) szubsztituált szilatránokban [XII].

Számításaim alapján az elektronkorreláció figyelembevétele elengedhetetlenül fontos ahhoz, hogy szilatránokban a kísérletekkel jól egyező Si-N távolságot kapjunk. Ebben a tekintetben a GGA-DFT módszerek viszonylag kis, 6-31G(d5) bázissal is megfelelő eredményt adnak, az 1-fluor- és az 1-metilszilatrán esetében a rendelkezésre álló ED adatokkal kitûnő egyezést mutatnak (v.ö. 7.1 táblázat). A DFT integrálási rács finomítása 2-3 pm rövidülést okoz az Si-N távolságban (v.ö. 7.1 táblázat és 7.1 ábra), a többi geometriai paraméter változása elhanyagolható. A 7.1 táblázat alapján látható, hogy viszonylag jó egyezés van az MP2 és a GGA-DFT eredmények között is, de a GGA-DFT eredmények közelebb esnek a gázfázisú ED kísérleti eredményekhez. A 7.1. ábrán az 1-klórszilatrán finom ráccsal számított egyensúlyi geometriáját mutatom be [XII].

- 7.1. ábra. Az 1-klórszilatrán BP/6-31G(d5) módszerrel számított (és röntgendiffrakcióval mért)¹⁰ geometriája. A számításokat finom ráccsal végeztem. A kötéshosszak pm-ben vannak megadva [XII].
- A kísérleti adatok analízise azt mutatja, hogy az Si-N távolságot a kísérleti módszerek megbízhatóan adják meg, de a többi geometriai adat megbízhatóságával kapcsolatban esetenként kétségek merülnek fel. A 7.1 ábrán látható, hogy a röntgendiffrakcióval mért C-C kötéstávolság 10,4 pm-rel rövidebb mint a számított 153,8 pm. A számítások szerint a C-C kötéstávolság nem függ az Si-N távolságtól, ezért a röntgendiffrakció által szolgáltatott 143 pm körüli C-C kötéstávolság oka nem a rövidebb Si-N távolság. Fontos megjegyezni, hogy az 1-fluorszilatrán esetében a röntgendiffrakció rendezetlen torzult szerkezetet ad. Ezért szerepel a 7.2. táblázatban 6 különböző C-C kötéstávolság. Feltételezhető, hogy az 1-klórszilatrán szerkezete is rendezetlenségre utaló jeleket mutatott, de a viszonylag rossz minőségû kísérleti adatok feldolgozásakor ezt nem vették figyelembe. A számítási eredmények alapján csekély energia elegendő a szilatránváz torzításához, nagy amplitúdójú

kis energiájú elmozdulások lehetségesek. A röntgendiffrakció a torzult enantiomer szerkezetek átlagát látja és ez lehet a látszólagos kötésrövidülés oka. Megjegyzendő, hogy az átlagolódásra utal az is, hogy a röntgendiffrakciós adatok szerint a három N-C-C-O-Si gyûrû csaknem planáris, viszonylag rövid N-C kötéstávolsággal és nagy N-C-C kötésszöggel (7.1 ábra) [XI].

Szubsztituens (R)	Cl	F	Me	Н
HF/3-21G(d)	153,4	153,5	153,5	153,5
HF/6-31G(d)	152,7	152,8	152,8	152,8
B3P/6-31G(d5)	152,6	152,7	152,8	152,7
BP/6-31G(d5)	153,8	154,0	154,8	154,1
ED (rg)	-	$151,4 \pm 1,1$	155,8(10)	
Röntgen (e.s.d.)	142,7	146,1(6), 153,0(3)	151,4(8)	
	143,3	148,0(6), 148,7(7)	153,0(8)	
	144,3	145,0(7), 152,9(6)	153,4(8)	

7.2. táblázat. Számított és kísérleti C-C távolság (pm) szubsztituált szilatránokban.

Valamennyi általam alkalmazott módszer egybehangzóan azt az eredményt adta, hogy nagy, 260 pm Si-N távolság esetében az öttagú anellált gyűrűkben az O-Si-N-C torziós szög nulla és a C-O-Si-N torziós szög -30° körüli érték. A számítások szerint az Si-N távolság fokozatos csökkentése során az O-Si-N-C torziós szög egyre negatívabb értékeket vesz fel, miközben a C-O-Si-N torziós szög nullához tart. Rögzített 200 pm Si-N távolság mellett teljesen optimalizálva a geometriát az O-Si-N-C torziós szög -20° körüli értéket vesz fel és a C-O-Si-N torziós szög közel nulla. Ez utóbbi gyûrûalak megfelel az 1-fluorszilatrán 204 pm Si-N távolságnál röntgendiffrakcióval mért alakjának, de erősen eltér az 1klórszilatránban mért¹⁰ planáris gyûrûtõl. Ez is azt támasztja alá, hogy az utóbbi adat mûtermék. 232 pm Si-N távolság mellett, amely megfelel a gázfázisú ED kísérlet eredményének, kiszámítottam a két torziós szöget. Az eredmény O-Si-N-C = -8° és C-O-Si-N = -20° . Az 1-fluorszilatránban 232,4 pm Si-N távolság mellett mért ED kísérleti adat⁶ O-Si-N-C = $20,7(8)^{\circ}$ és C-O-Si-N = $-2,8(10)^{\circ}$. Ugyanakkor, mint a 7.3 táblázat adataiból látható, az ED kísérleti O-C-C kötésszögek messze a kísérleti hibahatáron túl, 6-7°-kal nagyobbak a számított és a röntgendiffrakcióval mért adatoknál. Mindez azt valószínûsíti, hogy az ED gyûrû, amelyben mindkét szénatom az O-Si-N sík azonos oldalán van, felülvizsgálatra szorul, mert a számítások és a röntgenszerkezetek szerint a két szénatom az O-Si-N sík ellenkező oldalán van 200-260 pm Si-N távolságtartományban [XI, XII].

	· uoruzut: Szumitott es hiserieu o o o notesszog () szuosztituáti szinuturi					
_	Szubsztituens (R)	Cl	F	Me	Н	
	HF/3-21G(d)	108,3	108,8	109,2	109,0	
	HF/6-31G(d)	109,8	109,7	110,7	110,4	
	HF/CEP-31G(d)	109,6	109,4		110,2	
	MP2/CEP-31G(d)	108,3	108,4		108,8	
	B3P/6-31G(d5)	109,2	109,1	110,0	109,7	
	BP/6-31G(d5)	109,4	109,4	110,2	110,0	
	ED (rg)	-	$117,0\pm0,7$	116,4(16)		
	Röntgen (e.s.d.)	110,3	110,7(5), 109,9(5)	107,7(7)		
		111,4	111,1(5), 111,4(6)	108,5(7)		
		111,6	111,1(5), 109,4(5)	109,9(6)		

7.3. táblázat. Számított és kísérleti O-C-C kötésszög (°) szubsztituált szilatránokban [XII].

• A szilárd fázisban bekövetkező jelentős Si-N kötésrövidülés modellezése céljából önkonzisztens reakciótér (angolul Self Consistent Reaction Field, SCRF) GGA-DFT számításokat végeztem. A 7.4. táblázatban szereplő eredmények alapján jól látható, hogy a dielektromos médiumba merített 1-klórszilatrán esetében az Si-N kötéstávolság rövidülése, az ellenkező oldali Si-X távolság és a dipólusmomentum növekedése sokkal nagyobb mint az 1-fluorszilatránban. Ezek az eredmények teljes összhangban vannak azzal a kísérleti megfigyeléssel, hogy szilárd fázisban az 1-klórszilatránban az Si-N távolság rövidebb, mint az 1-fluorszilatránban, és meglepően hosszú, 215 pm Si-Cl kötéstávolságot mértek. Ez a jelenség úgy értelmezhető, hogy a N-atom intramolekuláris S_N2 nukleofil támadást hajt végre az Si-atom irányában, miközben a túloldalon a Cl-atom lehasad. A nagy Si-Cl távolságnövekedés oka az, hogy a Cl-atom jó *leaving group*. Az általam alkalmazott SCRF modell nagyon egyszerű gömb alakú üreggel dolgozik, ezért nem várható, hogy a szilárd fázisban a gáz-fázishoz képest tapasztalt változásokkal [XII].

Cl	Cl	Cl	F	F
	466 ^b	453		453 ^b
0,0	45,0	45,0	0,0	45,0
-1266,15140	-1266,14769	-1266,14681	-905,78060	-905,77849
0,00000	-0,01480	-0,01702	0,00000	-0,01059
8,662	11,617	11,947	7,496	9,422
228,6	217,8	216,9	230,2	221,4
210,1	214,7	215,3	162,3	163,6
153,8	153,7	153,7	154,0	153,9
142,1	142,6	142,7	141,7	142,0
	Cl 0,0 -1266,15140 0,00000 8,662 228,6 210,1 153,8 142,1	Cl Cl 466 ^b 466 ^b 0,0 45,0 -1266,15140 -1266,14769 0,00000 -0,01480 8,662 11,617 228,6 217,8 210,1 214,7 153,8 153,7 142,1 142,6	Cl Cl Cl 466 ^b 453 0,0 45,0 45,0 -1266,15140 -1266,14769 -1266,14681 0,00000 -0,01480 -0,01702 8,662 11,617 11,947 228,6 217,8 216,9 210,1 214,7 215,3 153,8 153,7 153,7 142,1 142,6 142,7	Cl Cl Cl F 466 ^b 453 453 0,0 45,0 45,0 0,0 -1266,15140 -1266,14769 -1266,14681 -905,78060 0,00000 -0,01480 -0,01702 0,00000 8,662 11,617 11,947 7,496 228,6 217,8 216,9 230,2 210,1 214,7 215,3 162,3 153,8 153,7 153,7 154,0 142,1 142,6 142,7 141,7

7.4. táblázat. Az 1-klór- és 1-fluorszilatrán molekulákra vonatkozó BP/6-31G(d5) SCRF eredmények [XII]. ^a

^a Az üreg sugara és a kötéstávolságok pm-ben, az energia Hartree-ban, dipolusmomentum Debye-ban van megadva. A számításokat finom ráccsal végeztem.

^b Számított egyensúlyi üregsugár.

 Elvégeztem az 1-klór-, 1-fluor-, 1-hidrogén és 1-metilszilatrán rezgési analízisét BP és B3P DFT módszerekkel sg1 és finom rács alkalmazása mellett. Ez azt mutatta, hogy nagyszámú kis energiájú rezgés van jelen a szilatránok rezgési spektrumában. A legalacsonyabb energiájú rezgés 75 cm⁻¹ körüli és a O-Si-N-C torzióhoz rendelhetõ. Az Si-H és Si-F kötésnyújtási frekvenciák jól azonosíthatók 2236 és 895 cm⁻¹ körüli értéknél. Ezzel szemben az Si-Cl rezgés erősen csatolódik az Si-N nyújtási rezgéssel [XII]. Irodalomjegyzék

- 1. G. I. Csonka, P. Hencsei, J. Organomet. Chem. 446, 99 (1993).
- 2. G. I. Csonka, P. Hencsei, J. Mol. Struct. (Theochem), 283, 251 (1993).
- 3. G. I. Csonka, P. Hencsei, J. Organomet. Chem. 454, 15 (1993).
- 4. G. I. Csonka, P. Hencsei, J. Comp. Chem. 15, 385 (1994).
- 5. M. W. Schmidt, T. L. Windus, M. S. Gordon, J. Am. Chem. Soc. (1995).
- 6. G. Forgács, M. Kolonits, I. Hargittai, Struct. Chem. 1, 245 (1990).
- 7. Q. Shen, R. L. Hilderbrandt, J. Mol. Struct. 64, 257 (1980).
- 8. L. Párkányi, P. Hencsei, L. Bihátsi, T. Müller, J. Organomet. Chem. 269, 1 (1984).
- 9. L. Párkányi, L. Bihátsi, P. Hencsei, Cryst. Struct. Commun. 7, 435 (1978).
- 10. A. A. Kemme, Ya. Ya. Bleidelis, V. A. Pestunovich, V. P. Baryshok, M. G. Voronkov, *Dokl. Akad. Nauk SSSR*, **243**, 688 (1978).