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Semilocal density functional approximations for the exchange-correlation energy can improperly
dissociate a neutral molecule XY (Y # X) to fractionally charged fragments X*7--- Y~ with an energy
significantly lower than X°---Y°. For example, NaCl can dissociate to Na*?4---CI-%4 Generally, ¢
is positive when the lowest-unoccupied orbital energy of atom Y° lies below the highest-occupied
orbital energy of atom X°. The first 24 open sp-shell atoms of the Periodic Table can form 276
distinct unlike pairs XY, and in the local spin density approximation 174 of these display
fractional-charge dissociation. Finding these lowest-energy solutions with standard quantum
chemistry codes, however, requires special care. Self-interaction-corrected (SIC) semilocal
approximations are exact for one-electron systems and also reduce the spurious fractional charge g.
The original SIC of Perdew and Zunger typically reduces ¢ to 0. A scaled-down SIC with better
equilibrium properties sometimes fails to reduce ¢ all the way to 0. The desideratum of
“many-electron self-interaction freedom” is introduced as a generalization of the one-electron

concept. © 2006 American Institute of Physics. [DOI: 10.1063/1.2387954]

I. INTRODUCTION

The Kohn-Sham density functional theoryl’2 reduces the
many-electron ground-state problem to a tractable self-
consistent one-electron form. The many-electron exchange-
correlation energy

Exc[nT’nl]zjdr g([nT’nl];r) (1)

is often approximated by semilocal density functionals, in
which the energy density g at position r depends upon the
electron spin densities 7(r") and n|(r") (and perhaps on the
occupied orbitals) only in an infinitesimal neighborhood of r.
A ladder of nonempirical semilocal approximations shows
increasing usefulness for chemistry. For example,3 the mean
absolute total error of 223 molecular atomization energies is
121.8 kcal/mol in the local spin density approximation
(LSDA),"** 22.2 keal/mol in the generalized gradient ap-
proximation (GGA) of Perdew, Burke, and Ernzerhof
(PBE).® and 5.8 kcal/mol in the meta-GGA of Tao, Perdew,
Staroverov, and Scuseria (TPSS).7 For comparison, the mean
atomization energy is 1180 kcal/mol, so the relative errors
are very small. These approximations also predict satisfac-
tory equilibrium geometries and vibration frequencies for
most molecules,’ satisfactory dipole moments at equili-

“Electronic mail: csonkagi@gmail.com

0021-9606/2006/125(19)/194112/8/$23.00

125, 1941121

brium,® and satisfactory binding energy curves for many
molecules X2.9

The atomization energies above are computed with re-
spect to separated neutral atoms. It is not widely realized that
some binding energy curves or energy surfaces can show
much bigger errors, because the semilocal approximations
can dissociate a neutral molecule XY (Y # X), to fragments
X*4---Y~4 with spurious fractional charge ¢ >0, and with an
energy below that of X°:--Y°. For example, in LSDA NaCl
can dissociate to Na*%4---Cl7%4 with an energy lowering of
about 25 kcal/mol relative to Na’- --CI°. A similar effect will
occur in a polyatomic molecule built in part from atoms X
and Y.

This effect was predicted long ago for the Xa method by
Slater'® and for the LSDA by Perdew et al."" and others.'*™™
Since the total energy of X*? "...y=4" in the dissociation limit
is just the sum of the energies of the atomic fragments X+’
and Y™, the energy-minimizing ¢ can be found from purely
atomic calculations. The earlier numerical work was done
with the atomic programs of that time, in which the densities
of p and d orbitals were replaced by their spherical averages
and fractional occupation numbers were allowed. In these
calculations, the noninteracting kinetic energy and density of
each atom are written as 2,f{i;|-V2/2|;) and 2.f|(r) |,
respectively, where O <f;=<1 is the occupation of the local-
ized atomic Kohn-Sham orbital ;. For each considered set
of occupation numbers, self-consistent calculations are made
for each atom, and the set that minimizes the sum of the two
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atomic energies is chosen. The resulting total energy is"?
(apart from the inessential spherical averaging) just what
would be predicted by a LSDA calculation for a diatomic
molecule at infinite bond length. Figure 6 of Ref. 13 predicts
the LSDA dissociation limit for NaCl to be Na*%4...CI1794,
At fixed total electron number, the total LSDA energy mini-
mizes with only 0.6 (not 1) electrons in the Na 3s7 orbital
and with 2.4 (not 2) electrons in the Cl 3pT orbital, making
these two orbitals degenerate at the Fermi level. To go be-
yond semilocal approximations to SIC or Hartree-Fock re-
quires extensions" of these approximations to fractional
electron number.

Over subsequent years, several searches'® for this effect
were attempted by plotting binding energy curves for the
molecule NaCl using standard molecular codes,17 but the so-
lutions approached Na’- --CI° as the bond length approached
infinity. (We speculate that dissociating NaCl may show mul-
tiple Aufbau-respecting solutions or near solutions of the
Kohn-Sham equations, although only one is of lowest total
energy.) It is only in the past year that we found the lowest-
energy, fractional-charge solution. (For technical details see
Sec. IIL.) In the past year Dutoi and Head-Gordon'® also
observed the effect for XY=LiF, LiCl, NaF, and NaCl using
a GGA and its hybrids with exact exchange, and showed how
the binding energy curves approach a limiting energy below
that of X°---Y°. Ossowski er al.'” observed the effect in a
molecular calculation for LiF and its nonoccurrence for H,O,
in 2003. As we will show here, the effect is widespread and
not limited to strongly ionic molecules.

From the simplest perspective, the spurious fractional-
charge dissociation arises from the self-interaction error in-
herent to all the semilocal functionals,l&15 i.e., from their
failure to be exact for all one-electron densities. As we will
also show here, however, for a correct dissociation it is not
enough to make the functionals exact for all one-electron
densities. More importantly, one must ensure that the energy
of an open system with fractional electron number N has a
realistic linear variation'' with N between any two integers
M—-1 and M. Equivalently, one must make the highest-
occupied and lowest-unoccupied orbital energies for the at-
oms realistic, in a sense to be discussed in the next section.

A related problem of semilocal density functionals is
somewhat better known.””* Charged radicals such as H;
also show very unrealistic binding energy curves. In the case
of the one-electron system H;,zo having half an electron on
each dissociated proton is not spurious, but the energy asso-
ciated with a fractional electron number is still seriously too
low as an unambiguous consequence of self-interaction error.
For compact subsystems such as separated atomic fragments,
the semilocal functionals are typically more accurate for an
integer than for a fractional electron number;26 for the latter
case, they tend to make the energy relatively too low, as a
consequence of an exchange-correlation hole sum rule dis-
cussed in Secs. 4A and 4C of Ref. 13: Over a separated
subsystem, the semilocal hole density always integrates to
—1, while the exact and Perdew-Zunger self-interaction-
corrected hole densities integrate to —1 for an integer elec-
tron number but to a less-negative value for a fractional
number.'*'?
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Il. ROLE OF THE ATOMIC ORBITAL ENERGIES

Let &; and f; be the orbital energy and occupation num-
ber of orbital ;(r), respectively. Then the total energy
change OF arising from infinitesimal changes Jf; of the oc-
cupation numbers is

OF = E Siﬁfi. (2)

Equation (2) was derived by Slater'® within the Xa method
and by Janak®’ within the approximate or exact Kohn-Sham
density functional theory. For the PZ self-interaction correc-
tion (without off-diagonal Lagrange multipliers), it was de-
rived by Perdew and Zunger.

Physically meaningful energies E are typically ground-
state energies for which the orbitals obey an “Aufbau prin-
ciple,” with f;=1 for ;< pu, 0<f;<1 for ;= u, and f;=0 for
g;>u, where w is the chemical potential. Let ¢’ (1>¢’
=0) be any positive fractional charge on X (not necessarily
the energy-minimizing value ¢). Then, in a process where
6q >0 electrons are transferred from a separated atomic frag-
ment X* to a separated atomic fragment Y‘q/, the energy
change is

E(x+[q'+5f1] e Y—[q'+5q]) _ E(XH/ .. Y—q')
= e"0(X*") (= 89) + £V (Y~7)(89)
=[e"V(r ") - "O(x*')] 8¢, (3)

by Eq. (2). Here sHO(X“J') is the highest-occupied (¢’ =0) or
partially occupied orbital energy of X*¢', and e“V(Y~7') is the
lowest-unoccupied (¢’ =0) or partly unoccupied orbital en-
ergy of Y74 ", This process lowers the energy if

eLU(r 1) < eHo(x*7), (4)

and continues until the two sides of Eq. (4) equalize at g’
=q.

For neutral atom pairs (X° and Y°, ¢’ =0), condition (4)
can be satisfied within the LSDA, leading to a spurious
fractional-charge dissociation. Since the orbital energies
change little in higher-level semilocal approximations, a
LSDA-like fractional charge is also expected within the
GGA and meta-GGA. A close look at Figs. 1 and 2 shows
that gradient corrections tend to open the highest-occupied—
lowest-unoccupied (HO-LU) gap slightly.

The situation is different in the exact Kohn-Sham den-
sity functional theory,” in which for 0=¢’' <1

eHO(x*") = — [(X9), (5)

MUy 1) = - A(Y), (6)

where I(X°) is the first ionization energy of neutral atom X,
and A(Y?) is the electron affinity of neutral atom Y. Since the
largest electron affinity of the periodic Table [A(CI)
=3.62 eV] is smaller than the smallest ionization energy
[I(Cs)=3.89 eV], Eq. (4) is never satisfied in the exact
Kohn-Sham theory, in which neutral molecules always dis-
sociate to neutral atoms.
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FIG. 1. LSDA/6-311G(d) highest-occupied orbital energy e"° (hartree) and
lowest-unoccupied orbital energy Y (hartree) vs Z for the 24 open sp-shell
atoms with atomic number Z<36. The LSDA &"° is one-half to two-thirds
of minus the experimental ionization energy I, and follows the periodic
trend of —1. Even for Ca (Z=20), the LU is not a d orbital. The Cu and Zn
(Z=29 and 30, respectively) atoms were calculated with the 6-311+G(d)
basis set. Note that adding diffuse functions to the basis set causes relatively
small (less than 0.003 hartree) changes except for Cu and Zn. In Zn, how-
ever, it decreases €U by 0.16 hartree.

Combining Egs. (5) and (6) with Eq. (3) shows that the
exact total energy varies linearly with ¢’ in the range 0
=<g' <1, consistent with an ensemble interpretation of the
fractional electron number.'' The derivative of the exact total
energy with respect to the electron number, and the exact
exchange-correlation potential, can jump discontinuously at
integer electron numbers, a prediction of Ref. 11 that has
received much recent confirmation.®° Within semilocal ap-
proximations, the exact straight-line segments of the total
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FIG. 2. PBE GGA/6-311G(d) highest-occupied orbital energy e"° (hartree)
and lowest-unoccupied orbital energy g™V (hartree) vs Z for 24 open sp-shell
atoms with atomic number Z<36. The Cu and Zn (Z=29 and 30, respec-
tively) atoms were calculated with the 6-311+G(d) basis set.
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energy versus number between integer numbers are replaced
by segments resembling upward-curving parabolas, but a
nearly linear behavior is recovered after the
Perdew—Zunger15 self-interaction correction (see Fig. 6 of
Ref. 13).

lll. COMPUTATIONAL DETAILS

All calculations were carried out with the 03 and devel-
opmental versions of the GAUSSIAN molecular program.17
Except where otherwise noted, the 6-311G(d) basis set and
the ultrafine grid were used. For 22 of our 24 atoms the £"°
and "V energies are insensitive (energy effect less than
0.003 hartree) to the addition of diffuse functions to the basis
set. The two exceptions are Cu and Zn, for which the addi-
tion of the diffuse functions led to considerable stabilization
in £H° and especially in V. A particularly large effect
(=0.16 hartree) was found for “Y(Zn).

The densities of p and d orbitals were nonspherical. The
flavor of LSDA was SVWNS5.> The Hartree-Fock (HF),
LSDA, PBE, TPSS, and SIC (Refs. 15 and 31) calculations
were spin-unrestricted. SIC was implemented as in Refs. 32
and 33. Because we avoid approximations made in the origi-
nal Perdew-Zunger SIC solutions' for atoms (neglect of off-
diagonal Lagrange multipliers and spherical averaging of or-
bital densities), and because the original solutions are only
for LSDA SIC, conclusions based upon them may be only
qualitatively applicable to ours. For the SIC calculations
(available only in the developmental version), the large un-
pruned (99 590) grid and the Guess=Alter keyword were
used. The latter is important for avoiding the higher-energy
ionic state at the dissociation limit in SIC and HF. For ex-
ample, near the critical bond length R, of Sec. V, one might
need to switch an electron from an orbital localized on Y to
a nearly degenerate orbital localized on X.

Most importantly, we used quadratic convergence (SCF
=qc) and (for the LSDA, PBE, and TPSS calculations)
Stable=Opt to help find the solution of the lowest possible
energy. Without this, the molecule XY might tend to the
higher-energy X°---Y? as the bond length R — .

IV. PERVASIVENESS OF FRACTIONAL-CHARGE
DISSOCIATION

To see how widespread the fractional-charge dissocia-
tion error is, we considered the first 24 open sp-shell atoms
of the Periodic Table, i.e., H-Ca and Cu-Br (excluding the
rare gas and most of the first transition-metal series elements,
for reportorial and computational conveniences). For each
neutral atom, we evaluated £"° and "V within the LSDA.
The results are reported in Table I, where they are presented
first in order of decreasing £"°(X") and then in order of
increasing e"V(Y?).

From Table I, it is easy to see for which pairs XY Eq. (4)
is satisfied and spurious fractional-charge dissociation will
be found. F, at the top of the ¥ column (the lowest &'V at
Z=9 in Figs. 1 and 2), can take a fraction of an electron from
every other atom in the X column but itself. On the other
hand, the atoms H, Na, Li, Be, K, Ca, Mg, and Zn, at the
bottom of the Y column (with e"V>-0.1 hartree in Figs. 1
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TABLE 1. The 24 open sp-shell atoms with atomic number Z <36, arranged as follows. Column X: in order of
decreasing highest-occupied orbital energy £"° (hartrees). Column Y: in order of increasing lowest-unoccupied
orbital energy eV (hartrees). The calculations were performed with LSDA using the 6-311G(d) basis set. The
spin of the HO and LU orbitals is also shown, where « is the majority and S is the minority spin. For a

spin-unpolarized atom, we show only « spin.

Z X £HO (x9) Spin zZY W (Y0) Spin
19 K -0.096 @ 9 F -0.357 B
31 Ga -0.109 @ 17 C1 -0.305 B
13 Al -0.110 @ 35 Br -0.279 B
11 Na -0.113 @ 8 O -0.247 B

3 Li -0.116 @ 16 S -0.227 B
20 Ca -0.141 @ 6 C -0.216 a

5 B -0.147 a 34 Se -0.214 B
32 Ge -0.163 @ 14 Si -0.167 @
14 Si -0.167 @ 32 Ge -0.163 @
12 Mg -0.175 @ 15 P -0.154 B
29 Cu* -0.183 @ 29 Cu* -0.152 B

4 Be -0.205 @ 33 As -0.149 B
34 Se -0.214 B 7 N —-0.148 B

6 C -0.219 @ 5 B -0.140 a
33 As -0.219 a 31 Ga -0.107 a
30 Zn* -0.223 @ 13 Al -0.107 @
16 S -0.227 B 1 H -0.093 B
15 P -0.234 @ 11 Na -0.082 B

8 0 ~0.255 B 3 Li ~0.077 B

1 H -0.268 @ 4 Be -0.076 @
35 Br -0.280 B 19 K -0.075 B

7 N -0.300 @ 20 Ca -0.053 a
17 ¢l ~0.306 B 12 Mg ~0.050 «

9 F -0.358 B 30 Zn* -0.045 @

Calculated with the 6-311+G(d) basis set.

and 2), cannot take a fraction of an electron from any sepa-
rated atom in the X column. Figures 1 and 2 show the peri-
odic nature of £"° and &Y.

For Table I, there are 24 X 23/2=276 distinct pairs XY
=YX (Y#X). Simple counting shows that 174 of these
(63%) display some spurious fractional-charge dissociation.
The effect is pervasive and is expected to be largest for pairs
near the top of the table, such as KF. The effect is, however,
absent in the large class of molecules containing only C, H,
N, and/or P. The table confirms Perdew’s prediction13 of the
LSDA fractional-charge dissociation in NaCl and not in LiH.
It is also consistent with the fractional-charge dissociation of
LiF, LiCl, NaF, and NaCl seen by Dutoi and Head-Gordon'®
using a GGA, and with the calculation of significant
fractional-charge dissociation in LiF, but none in H,O by
Ossowski e al." using LSDA and GGA.

Table II shows a further test of the predictive power of
Table I. It shows the LSDA fractional (Mulliken) charge ¢ on
X in XY at R=6 A, a finite but highly stretched bond length
where the exact ¢ is expected to be very close to zero for the
systems studied in Table II. The predictions of Table I are
confirmed. We will present detailed results for XY=NaCl in
later sections.

V. DEPENDENCE OF FRACTIONAL CHARGE AND
ENERGY ON BOND LENGTH IN NaCl

When the densities of two atoms overlap, there is no
unique physical definition for the net charge on one of the

atoms. We have used the Mulliken, the natural population
analysis (NPA),* and the ChelpG® charges on Na and Cl in
NaCl. Mulliken charges are known to be basis-set dependent
and tend to give unphysical results.’® We observed that for
shorter interatomic distances (R<5 A) there is a consider-
able difference between the various charges;37 the wave-
function-based Mulliken charges are always the smallest and
the NPA charges are the largest. The ChelpG charges derived
from the electrostatic potential are between the two. At R
=2.5 A the HF Mulliken, ChelpG, and NPA charges on Na
are 0.77, 0.84, and 0.96, respectively. The LSDA and PBE
Na charges are equal to each other and show the same order,
but the Mulliken, ChelpG, and NPA charges are somewhat
smaller (0.66, 0.77, and 0.91, respectively) than the HF ones.

TABLE II. LSDA orbital energy differences (in hartrees) for the neutral
atoms and LSDA fractional (Mulliken) charges ¢ on X in XY at bond length
R=6 A.

XY eV (Y9)-eM0 (X q (R=6 A)
CaO —-0.106 0.32
MgS —-0.052 0.22
AlC —-0.106 0.14
AlSi -0.057 0.13
BeSe —-0.009 0.04
BN —-0.001 0.01
HC +0.126 0.00
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FIG. 3. Fractional (ChelpG) (Ref. 35) charge g on Na in NaCl as a function
of bond length R (in A). The Hartree-Fock “quantum phase transition” is
qualitatively right, as discussed in the text.

At larger distances (R>6 A) the overlap of the orbitals be-
comes negligible and the Mulliken, ChelpG, and NPA
charges agree closely with each other.

Figure 3 shows the fractional (ChelpG) charge ¢ on Na
in NaCl as a function of bond length R in the range from
equilibrium (around 2.4 A) to the highly stretched R=30 A.
The predictions of the HF theory are compared to those of
three semilocal approximations. Although HF is far from ex-
act, it is self-interaction-free and thus probably qualitatively
right.

All methods agree that ¢ is large at equilibrium. In HF, ¢
grows toward 1 until a critical radius R?F% 58 Ais reached,
then drops suddenly to near O for larger R. The semilocal
approximations show the Mulliken ¢ increasing, the NPA ¢
decreasing, and the ChelpG ¢ almost constant up to R=4 A,
then gradually decreasing toward a spurious limit around 0.4
as R— . Semilocal approximations are “super polarizing”18
for R>R,, but we observe that they are also “subpolarizing”
for R<R,.

The exact fractional charge on Na should also show a
sharp transition from ~1 to ~0 around a critical RIC'IF (pos-
sibly with some rounding). In a molecule XY, when R is big
enough to produce negligible overlap of the atomic densities
and negligible contribution of ¢=2, the energy difference
between the cases g=1 and ¢g=0 should be

2
EXT Y Y -EX"- YY) =1(X) -A(Y") - —. ()
This difference vanishes at the critical radius''
2
R - ®)

XY - A

For XY=NaCl, using experimental I(Na’) and A(CI°), Eq.
(8) predicts R.(NaCl)=(27.21 eV/a.u.)/(5.14 eV-3.62 eV)
=17.9 bohrs=9.5 A. Using unrestricted Hartree-Fock/6
-311G(d) values, R™F(NaCl)=27.21/(4.94-2.48)=11 bohrs
=5.8 A.

Figure 4 plots the binding energy curve E(XY)-E(X°)
—E(Y% versus bond length R for XY=NaCl in the HF,

J. Chem. Phys. 125, 194112 (2006)
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FIG. 4. Binding energy (kcal/mol) curves for NaCl E(NaCl)—E(Na®)
—E(CI°) vs R(Na—Cl). The sum of the energies of the neutral atoms is taken
as a reference, and the zero-point vibrational energy of NaCl is omitted. The
distance R is in angstroms. The experimental atomization energy at 0 K is
97.4%0.5 kcal/mol at an equilibium R=2361 A (Ref. 38) (I hartree
=627.5 kcal/mol and 1 bohr=0.5292 A,)

LSDA, PBE GGA, and TPSS meta-GGA approximations.
The experimental atomization energy is 97.4+0.5 kcal/mol
at an equilibrium R=2.361 A Al approximations predict a
reasonable equilibrium bond length. At equilibrium, as usual
LSDA overbinds (but by less than usual) and HF underbinds,
with improvements from LSDA to PBE to TPSS. But only
the HF curve properly tends to zero at R=9.5 A, where the
semilocal functionals are 25-30 kcal/mol too low.

The HF behavior and the presumed exact behavior are
those of a quantum phase transition in stretched NaCl. The
bond length R is a parameter in the Hamiltonian; the charac-
ter of the ground state can change suddenly as R passes
through a critical value R,. where the energies of two differ-
ent stationary states cross. At R., g changes rapidly (Fig. 3)
and so can the derivative of the energy (Fig. 4). We note that
the latter behavior is also observed for the “long-range cor-
rected PIOSE functional,”3 ° and at the predicted critical radius
R.=9.5 A.

VI. SELF-INTERACTION CORRECTION

Given any density functional  approximation
E?CFA[nT,n L]’ we can construct a self-interaction-corrected
version

EPPMSIC 2 DAL ] - 3 A B[ 01+ UlnJt (9)

that is exact for any fully spin-polarized one-electron density.
Here n(r)=2;n,(r) is a sum of occupied orbital densities

[n(r)=Filg(r)|*],
U[n]——f fd ) - nlr) (10)

Ir' —r|

and y; reduces to 1 for any one-electron density. Equation (9)
gives no correction to the exact Ey[n;,n|]. The energy-
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minimizing SIC orbitals ¢;(r) can be localized even when the
canonical Kohn-Sham orbitals are not.

Perdew and Zunger15 made the simple choice y;=1, as
motivated by analogy with the Hartree-Fock theory, and
found remarkable improvements over LSDA for atoms. In
particular, they found that the energy-minimizing orbitals
(r) (without off-diagonal Lagrange multipliers to ensure
strict orthogonality) had orbital energies that satisfy Eq. (2)
and nearly satisfy Eqs. (5) and (6). Historically, the PZ SIC
preceded and helped motivate the exact density functional
theory for fractional particle number."’

Early SIC calculations for molecules included N, (Ref.
40) and Liz.41 Considerable time passed before the PZ SIC
could be implemented for many molecules. In molecules, the
off-diagonal Lagrange multipliers are unavoidable;***!
moreover the method can be quite slow in comparison with
the implementation of the underlying EXDCFA. Eventually, it
became clear’>>**™* that the PZ SIC degrades the equilib-
rium properties of molecules, such as bond lengths, although
it improves energy barriers.?' 34

Good equilibrium properties can be restored by scaling
down’"* the PZ SIC. In particular, the choice

AV\k
Xi:fd"|'ﬂ1(")|2'(7__g) =<1 (11)
is exact for all one-electron densities and has certain other
advantages.” In Eq. (11), 7, and 7¥=|Vn,|*/8n,< 7, are the
exact and von Weizsidcker positive kinetic energy densities
for electrons of the same spin o as orbital i, and k=0 is an
exponent, typically 1 or 2. k=0 recovers the PZ SIC (y;
=1), which is also recovered for one-electron ground states
where 7/ 7,=1. For densities with more than one electron
of each spin, k— o recovers the uncorrected Eor ** (x,=0).

If the PZ SIC (choice k=0) approximately satisfies Eqgs.
(5) and (6) for all atoms, then it is clear from Eq. (11) that
the scaled-down SIC will not, when £ is sufficiently greater
than O, by the argument at the end of the preceding para-
graph. The same can be said for the fractional-electron-
numtl)f{s version of the exchange-correlation hole sum
rule. ™

VII. RESILIENCE OF SPURIOUS FRACTIONAL-
CHARGE DISSOCIATION: RESULTS FOR NaCl

Table III shows the fractional (Mulliken) charge g on Na
in NaCl for the stretched bond lengths R=6 A and R
=12 A, which bracket the critical value R.=9.5 A discussed
in Sec. V. Results are presented for LSDA and PBE GGA [or,
equivalently for this many-electron system, Eq. (11) with &
—oo] and for various scaled-down (k=2 and 1) or full (k
=0) self-interaction corrections. As k decreases toward 0, the
results improve, but only the full PZ SIC (k=0) is qualita-
tively correct (as expected from the argument at the end of
the preceding section). Figure 5 shows that for the highly
stretched bond lengths, the binding energy curve shows a
similar improvement as k— 0.

The problem is that a good description of the equilib-
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TABLE III. Fractional (Mulliken) charge ¢ on Na in NaCl at bond lengths
R=6 and 12 A. evaluated in the HF, LSDA (k=), and PBE GGA (k=%),
with scaled-down self-interaction corrections (k=2 and 1), and with full
Perdew-Zunger (PZ) self-interaction correction (k=0). The PZ results are
qualitatively correct.

Method k g (R=6 A) g (R=12 A)
HF e 0.01 0.00
LSDA % 0.59 0.47
LSD-SIC 2 0.73 0.44
LSD-SIC 1 0.83 0.33
LSD-SIC-PZ 0 0.97 0.10
PBE ® 0.57 0.45
PBE-SIC 2 0.71 0.39
PBE-SIC 1 0.81 0.22
PBE-SIC-PZ 0 0.92 0.05

rium properties of molecules requires k=2 or 1, not 0. When
we improve the equilibrium properties in SIC, the resilient
fractional-charge error springs back, in part.

Viil. CONCLUSIONS

In the density functional theory, a molecule XY (Y # X)
will dissociate to spurious fractional-charge fragments
X*4---Y~4, with an energy below X°---Y°, if the lowest-
unoccupied orbital energy of Y lies below the highest-
occupied orbital energy of X [Eq. (4) of Sec. II, as ¢’ — 0+].
Then there will be an error in the large-separation region of
the binding energy curve or energy surface, although seeing
these errors with standard molecular codes may require spe-
cial care (Sec. III). This error is not uncommon for the ap-
proximate semilocal functionals LSDA, GGA, and meta-

Wl L
o

50
/ / —&—PBE SIC(k=0)

-60 —
‘\ / / — PBE SIC(k=1)

R\ ]

-80

-90 \¥}

Binding Energy

—e— PBE SIC(k=2)

-100 T T T T

2 4 6 8 10 12
R(Na-Cl)

FIG. 5. Binding energy (kcal/mol) curves for NaCl, E(NaCl)—E(Na’)

—E(CI°) vs R(Na—Cl), calculated by self-interaction-corrected PBE GGA.

k=0 is the original SIC introduced by Perdew and Zunger, and k is the

scaling exponent of Eq. (11). The sum of the energies of the neutral atoms is
taken as a reference.
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GGA (Sec. IV) and is typically similar at all three levels
(even though the TPSS meta-GGA correlation energy is ex-
act for any one-electron density).

In the exact density functional theory, Egs. (5) and (6)
are satisfied. For NaCl and similar molecules, there is then a
critical bond length R., Eq. (8), beyond which the exact ¢
drops to zero. The semilocal approximations make g too
large for R> R, and too small for R<R, (Sec. V).

The self-interaction correction of Perdew and Zunger,1
which approximately satisfies Eqs. (5) and (6) for atoms
(when the orbital energies are calculated as in Ref. 15),
eliminates the spurious fractional-charge dissociation of
NaCl and tends to improve energy barriers, but it worsens
the equilibrium properties of molecules. When we scale
down the self-interaction correction via Eq. (11),*" we im-
prove the equilibrium properties and keep the functional ex-
act for any one-electron density, but the resilient fractional-
charge error returns in part because Egs. (5) and (6) are now
satisfied less well.

We can say that a functional is “one-electron self-
interaction-free” if it is exact for any one-electron density,
and that it is nearly “many-electron self-interaction-free” if
its total energy has a realistic linear variation with electron
number N between all pairs of integers M—1 and M. Both
the original Perdew-Zunger self-interaction correction and
our scaled-down version of it are one-electron self-
interaction-free, but only the former is nearly many-electron
self-interaction-free for atoms (even more so than is the
Hartree-Fock theory) (see Fig. 6 of Ref. 13).

More precisely, we can say that a functional is nearly
“M-electron self-interaction-free” (M =positive integer) if its
total energy for a system of fixed external potential with
electron number N in the range M —1 <N =M has a realistic
linear variation with N, or equivalently if its highest-
occupied orbital energy for M—1<<N=<M is nearly equal to
minus the electron-removal energy from the M-electron sys-
tem. (This removal energy is zero if the system cannot bind
M electrons, and in that case the unbound electrons go to the
bottom of the free-electron continuum.) Our scaled-down
SIC reduces to PZ SIC for any subsystem ground state with
two or fewer electrons, so it is exactly one- and nearly two-
electron self-interaction-free, which improves its description
of dissociation not only for Hj but also for Hej (in which
each dissociation fragment He**> has 1.5<2 electrons).*’

The development of accurate approximations that are
nearly M-electron self-interaction-free for all M is one of the
most pressing problems in the density functional theory. The
solution of this problem would be relevant not only to the
calculation of energy surfaces but also to the problems of
charge transfer,”® charge transport,49 polalrizability,50 and
time-dependent density functional theory.SI It remains to be
seen to what extent hyper-GGA’s (Refs. 52-55) that use full
exact exchange and nonlocal correlation can be many-
electron self-interaction-free.
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