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The common density functionals for the exchange-correlation energy make serious self-interaction
errors in the molecular dissociation limit when real or spurious noninteger electron numbers N are
found on the dissociation products. An “M-electron self-interaction-free” functional for positive
integer M is one that produces a realistic linear variation of total energy with N in the range of
M −1�N�M, and so can avoid these errors. This desideratum is a natural generalization to all M
of the more familiar one of one-electron self-interaction freedom. The intent of this paper is not to
advocate for any functional, but to understand what is required for a functional to be M-electron
self-interaction-free and thus correct even for highly stretched bonds. The original Perdew-Zunger
self-interaction correction �SIC� and our scaled-down variant of it are exactly one- and nearly
two-electron self-interaction-free, but only the former is nearly so for atoms with M �2. Thus all
these SIC’s produce an exact binding energy curve for H2

+, and an accurate one for He2
+, but only the

unscaled Perdew-Zunger SIC produces an accurate one for Ne2
+, where there are more than two

electrons on each fragment Ne+0.5. We also discuss LiH+, which is relatively free from
self-interaction errors. We suggest that the ability of the original and unscaled Perdew-Zunger SIC
to be nearly M-electron self-interaction-free for atoms of all M stems in part from its formal
resemblance to the Hartree-Fock theory, with which it shares a sum rule on the exchange-correlation
hole of an open system. © 2007 American Institute of Physics. �DOI: 10.1063/1.2566637�

I. INTRODUCTION AND DEFINITIONS

Kohn-Sham density functional theory1,2 is widely used
in ground-state quantum chemistry and condensed matter
physics because of the conceptual and computational sim-
plicity of its self-consistent field form and because of the
useful accuracy of its common semilocal approximations to
the density functional for the exchange-correlation energy
Exc �n↑ ,n↓�. Of special utility are �in order of increasing ac-
curacy and complexity� the local spin density approximation
�LSDA�, the generalized gradient approximation �GGA�, the
meta-GGA, and the hybrids of these with exact exchange.
These functionals, especially at the higher levels, can be re-
markably accurate for compact systems of integer electron
number, such as isolated atoms and molecules near equilib-
rium, and for the binding energy curves of neutral symmetric
diatomics X2. It is a well-known problem that none of these
successful many-electron approximations is exact for all one-
electron densities �although the first three have nonempirical
constructions3–6�. By way of contrast, in the Hartree-Fock
approximation the spurious fully nonlocal self-Hartree en-
ergy is canceled exactly by self-exchange, and no spurious
self-correlation is present.

The self-interaction errors of common density function-
als are believed to be responsible for their underestimation of

energy barriers to gas-phase chemical reactions and for their
underestimation of many excitation energies within time-
dependent density functional theory. While it is easy to de-
fine, quantify, and understand these errors in one-electron
systems, it has not been so easy to do so in many-electron
systems. That is the general problem we address here.

The self-interaction error of common density functionals
is also believed to be responsible for several serious qualita-
tive errors that can arise in the approach to the dissociation
limit �1�. The approximate binding energy curves of symmet-
ric charged radicals X2

+ �e.g., H2
+, He2

+, and Ne2
+�7–12 display a

spurious energy barrier at intermediate bond lengths R.
When referenced to the integer-charge dissociation frag-
ments �like H+

¯H0�, the binding energies tend toward lim-
its below zero as R→� �as shown, for example, in Figs. 1
and 2 of Ref. 13, and in several figures of the present work,
including Fig. 1 for B2

+�. �2� Many asymmetric molecules
�e.g., NaCl and CaO� are predicted to show spurious
fractional-charge dissociation �e.g., Na+0.4

¯Cl−0.4�,14–19

with total energy below that of the proper integer-charge dis-
sociation fragments �e.g., Na0

¯Cl0�.
In both examples above, the problems arise for noninte-

ger electron number on a separated compact subsystem or
dissociation fragment. Perdew et al.15 showed how noninte-
ger electron number N can appear as an average of fluctuat-
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ing integer electron numbers and argued that the exact
ground-level energy for an isolated subsystem with a fixed
external potential must vary linearly with N between any two
adjacent integers �M −1�N�M�. �The relevance of this
work to molecules X2

+ was pointed out by Zhang and
Yang.20� A closed system with fixed electron number can be
composed of two isolated open systems of fluctuating elec-
tron number, and then a fully correlated wave function de-
scription of the closed system is equivalent to an ensemble
description of each open system �as shown in Sec. 2 A of
Ref. 16�. Exact density functionals can be defined by energy
minimizing searches over wave functions or ensembles of a
given electron density.

The dissociation limit of the one-electron system H2
+ is

the symmetric one H+0.5
¯H+0.5 �which for the exact density

functional becomes degenerate with H+q
¯H1−q for 0�q

�1 as the bond length R tends to infinity�. In this case the
noninteger electron number on H+0.5 is not spurious, and the
energy error of common functionals arises unambiguously
from their failure to be exact for all one-electron densities.
The LSDA dissociation limit of NaCl, Na+0.4

¯Cl−0.4, is of
course spurious.16,18,19 In either case, the common function-
als make the energy for noninteger electron number rela-
tively too low in comparison with that for integer electron
number.20 The reason for this can be seen directly from Fig.
1 for B2

+ and Fig. 2 for the B atom. Alternatively, it can be
traced back to a sum rule on the exchange-correlation hole
density �Eq. 84 of Ref. 16�. Over a separated compact sub-
system or dissociation fragment �e.g., H+0.5 in stretched H2

+�,
the hole that underlies the common functionals integrates to
−1. The exact hole integrates to −1 for integer electron num-
ber on the compact subsystem, but to a less negative value
for noninteger electron number. This sum rule is discussed
further in Sec. V.

Here and in Refs. 19 and 21, we have confirmed what
we have long suspected. To avoid these self-interaction er-
rors, it is not sufficient that the approximate functional be
exact for all one-electron densities. A universally useful ap-
proximate functional must be nearly M-electron self-
interaction-free for all positive integer M, not just for M =1.
As defined in Ref. 19, a density functional is �nearly�
“M-electron self-interaction-free” if, for any given external
potential and electron number N in the range of M −1�N
�M, the energy has �nearly� a realistic linear variation with
N. Note that there are two components of this definition: �a�
linearity of total energy with electron number N between
adjacent integers and �b� realism of the energy at integer
values of N. To satisfy condition �b�, the total energies or at
least the energy differences between adjacent integer particle
numbers must be close to exact, leading to realistic slopes for
the straight line connections. This desideratum is a natural
extension to all M of the familiar one of the one-electron
self-interaction freedom. The exact density functional15 is of
course exactly M-electron self-interaction-free, but common
approximations are not. The semilocal approximations tend
roughly to satisfy �b� but not �a�, while the Hartree-Fock
approximation �or the energetically almost-equivalent Kohn-
Sham exact-exchange approximation� satisfies �a� only for

FIG. 1. E�B2
+,R�−E�B�−E�B+� symmetric dissociation curves �kcal/mol�

calculated with HF, PBE GGA, and CCSD�T�=full using the 6-311G�d�
basis set. The interatomic distances are in Å. B2

+ has almost a one-electron
bond, cf. the HF and CCSD�T� curves. The oppositely signed HF and PBE
GGA errors for R→� are explained by Fig. 2. �1 hartree=627.5 kcal/mol
and 1 bohr=0.5292 Å�.

FIG. 2. The total ground-level energy difference E�N�−E�5� �kcal/mol� of
the B atom �Z=5� as a function of the number N of electrons bound to it.
The exact energy is a linkage of straight lines between integers M −1 and M.
The semilocal density functional approximation �e.g., PBE GGA� total en-
ergy difference is more parabolic and lower for noninteger N. The Hartree-
Fock energy difference can even curve downward, although the curvature
for 4�N�5 �addition of the first 2p electron� is not large. Note that elec-
tron correlation is important to stabilize the anion, and the energy is sensi-
tive to the basis set. The total energies for N=4.5 and 5.5 were taken to be
half those of stretched B2

+ and B2
−, respectively, at bond lengths of 90 Å. The

results were obtained with the aug-cc-pV5Z�f� basis set. The curves are
simple interpolations over calculated values at N=M −1, M −0.5, and M.
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one- and two-electron densities �see Fig. 2 and the end of
Sec. IV� and fails to satisfy �b� because of the missing cor-
relation energy.

Since the ith Kohn-Sham orbital energy,

�i = �E/�f i, �1�

is the derivative of the total energy with respect to the occu-
pation number f i�0� f i�1� in exact or approximate density
functional theory,22 it follows that the exact highest-occupied
or partly occupied orbital energy �HO in the ground state is
independent of N in the range of M −1�N�M and equal to
minus the electron removal energy from the ground state of
the M-electron system. �This removal energy is zero if the
system cannot bind M electrons, and in that case the un-
bound electrons go into the bottom of the free-electron con-
tinuum�.

The Perdew-Zunger self-interaction-corrected �SIC�
LSDA �Ref. 23� is exactly one-electron self-interaction-free.
As shown, for example, in Fig. 6 of Ref. 16, it is also nearly
M-electron self-interaction-free �M �1� for atoms. It elimi-
nates or greatly reduces fractional-charge errors, as shown in
Refs. 16, 17, 19, and 23–26, and here, but worsens the equi-
librium properties of molecules.27–31 By scaling down this
correction in many-electron regions31 �Sec. III�, we improve
the equilibrium properties. The scaled-down SIC is exactly
one-electron self-interaction-free, and as shown in Sec. III, it
is nearly two-electron self-interaction-free. But, as shown in
Ref. 19 and here, it fails to be M-electron self-interaction-
free for M �2. Moreover, as shown in Ref. 31, the exchange-
correlation potential of the scaled-down SIC has the correct
long-range −1/r behavior only for N�2; however, as shown
in Ref. 21, the correct −1/r asymptote for all M does not
guarantee M-electron self-interaction freedom.

As shown in Ref. 19, scaling down the SIC brings back
part of the spurious fractional-charge dissociation error. We
will show here that it also brings back part of the error of the
binding energy curve for Ne2

+. However, it does not bring
back any part of the error for He2

+, because in this three-
electron system each dissociation fragment He+0.5 has 1.5
�i.e., less than 2� electrons.

We will also investigate the performance of SIC and
scaled-down SIC for LiH+, a three-electron system which
properly dissociates to integer-charge fragments �Li+¯H�
even without SIC.13

II. COMPUTATIONAL DETAILS

The common functionals to which we apply SIC are
nonempirical semilocal ones:32 the Vosko-Wilk-Nusair4

�VWN5� LSDA, the Perdew-Burke-Ernzerhof5 �PBE� GGA,
and the Tao-Perdew-Staroverov-Scuseria6 �TPSS� meta-
GGA. Some binding energy curves for these common func-
tionals without SIC have been compared and evaluated in
our earlier work.13 TPSS is by construction one-electron self-
correlation-free, so only its exchange part gets a self-
interaction correction.

All our calculations used the developmental version of
the GAUSSIAN 03 molecular code.33 Our density functional
and SIC calculations were spin unrestricted and employed

the triple-zeta basis sets, 6-311G�d , p� and 6-311
+G�3df , p�. SIC was implemented as in Refs. 29 and 30.
Because we avoid approximations made in the original
Perdew-Zunger23 SIC solutions for atoms �neglect of off-
diagonal Lagrange multipliers and spherical averaging of or-
bital densities�, and because the original solutions are only
for LSDA SIC, conclusions based upon them may be only
qualitatively applicable to ours.

It was found that the SIC-DFT �density functional
theory� energy is more sensitive to the grid size than the
regular Kohn-Sham DFT and small grids can even lead to
convergence problems.29 Thus, for the SIC calculations, we
used the large unpruned �99 590� grid that gave equivalent
results compared to the larger �120 770� grid proposed
earlier.29 For the Ne+ ion, the initial guess of SIC orbitals
was prepared by solving the Kohn-Sham equations with the
restriction of spherical density followed by localization.29

For the Ne2
+ radical, we found self-consistent field �SCF�

convergence problems with the usual direct inversion on it-
erative subspace �DIIS� SCF convergence acceleration pro-
cedure, so we used the “SCF�QC” keyword �quadratic con-
vergence� instead. For Ne2

+ SIC �k=0� calculations, we were
able to find a low-energy asymmetric dissociation curve
starting from the Hartree-Fock �HF� guess at large inter-
atomic distances.

III. SELF-INTERACTION CORRECTION

Let Exc
DFA �n↑ ,n↓� be any density functional approxima-

tion for the exchange-correlation energy. We can construct a
self-interaction-corrected version of it,

Exc
DFA-SIC = Exc

DFA�n↑,n↓� − �
i

�i�Exc�ni,0� + U�ni�� , �2�

that is exact for any fully spin-polarized one-electron density.
Here n�r�=�ini�r� is a sum of occupied orbital densities
�ni�r�= f i · ��i�r��2, where f i is an occupation number �0� f i

�1��, and

U�ni� 	
e2

2

 dr
 dr�

ni�r� · ni�r��
�r� − r�

. �3�

The number �i must reduce to 1 for any one-electron density.
Equation �2� gives no correction to the exact Exc�n↑ ,n↓�. The
energy-minimizing SIC orbitals �i�r� tend to be localized
even when the canonical Kohn-Sham orbitals are not. The
localized orbitals should be orthonormal, since the employed
expressions for the density and kinetic energy of the orbitals
assume that.

Perdew and Zunger23 made the simple choice �i=1, as
motivated by analogy with the Hartree-Fock theory, and
found remarkable improvements over LSDA for atoms. In
particular, they found that the energy-minimizing orbitals
�i�r� �without off-diagonal Lagrange multipliers� had orbital
energies that satisfied Eq. �1� and made LSDA SIC nearly
M-electron self-interaction-free for atoms �in the sense of
Sec. I�. For atoms �Fig. 6 of Ref. 16�, the SIC energy showed
the correct �nearly� linear variation with electron number N
between M −1 and M. Historically, the Perdew-Zunger �PZ�
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SIC preceded and helped motivate the exact density func-
tional theory for fractional particle number.15

Early SIC calculations for molecules included N2 �Ref.
34� and Li2.35 Considerable time passed before the PZ SIC
could be implemented for many molecules. In molecules, the
off-diagonal Lagrange multipliers are unavoidable;34,35

moreover the method can be quite slow in comparison with
implementation of the underlying Exc

DFA. Eventually, it be-
came clear27–31 that the PZ SIC degrades the equilibrium
properties of molecules, such as bond lengths, although it
improves energy barriers.24,28

Good equilibrium properties can be restored by scaling
down31 the PZ SIC. In particular, the choice

�i =
 dr��i�r��2 · � 	

W

	

�k

� 1 �4�

is exact for all one-electron densities and has other
advantages.31 In Eq. �4�,

	
�r� = �
i�
�

f i���i�2 �5�

is the exact positive kinetic energy density for orbitals of
spin 
, and

	

W�r� = ��n
�2/8n
 � 	
�r� �6�

is the von Weizsäcker model thereof. In Eq. �4�, 
 is the spin
of orbital �i�r�, and k�0 is a scaling exponent, typically 1
or 2. k=0 recovers the PZ SIC ��i=1�. For densities with
more than one electron of each spin, k→� recovers the un-
corrected Exc

DFA ��i=0�.
Consider the Kohn-Sham description of few-electron

ground-state densities. If we have only one or fewer elec-
trons, then 	


W /	
=1 and Eq. �4� gives �i=1, the PZ SIC
result. Thus scaled-down SIC is one-electron self-
interaction-free. If we have only two or fewer electrons �i.e.,
one or fewer of each spin�, then again36 	


W /	
=1 and Eq. �4�
gives �i=1, the PZ SIC result. Thus scaled-down SIC is also
nearly two-electron self-interaction-free. For two or fewer
electrons, all considered SIC’s combine exact exchange
�purely a self-interaction correction in this case� with self-
interaction-corrected correlation. But, for M �2, 	


w /	
�1
in at least one spin channel, and there is no reason to expect
that scaled-down SIC will be nearly M-electron self-
interaction-free.

The argument of the preceding paragraph can also be
applied to the local hybrid functional of Jaramillo et al.37 or
at least to its exchange part, leading to the conclusion that it
is also one- and nearly two- but perhaps not nearly many-
electron self-interaction-free.

IV. BINDING ENERGY CURVES FOR H2
+, B2

+, He2
+, LiH+,

AND Ne2
+

Figure 1 shows the PBE GGA binding energy curve for
B2

+, which shows serious shape errors, as well as the HF and
the almost-exact CCSD�T� curves. B2

+ has almost a one-
electron bond, as shown by the close agreement of the HF
and CCSD�T� curves. Figure 1 of Ref. 13 also shows the
LSDA, PBE GGA, and TPSS meta-GGA binding energy

curves for a one-electron bond H2
+, which all show similar

and serious shape errors, as well as the exact curve. The first
problem for X2

+ �which we shall call the “compound mid-
point error”� is that those approximate functionals place the
symmetric dissociation limit X+0.5

¯X+0.5 much lower in en-
ergy than the asymmetric one X+1

¯X0, with which it should
be degenerate; only the latter is accurately described. The
second problem is that those approximate functionals make
the energy at large R vary as25 −�C�+e2 /4R, reflecting a Cou-
lomb repulsion between the half-charged symmetric frag-
ments that should be but is not canceled by long-range ex-
change. Since H2

+ is a one-electron molecule, and since all
our self-interaction-corrected functionals �original Perdew-
Zunger or scaled down� are one-electron self-interaction-
free, all of them yield the exact curve for H2

+.
Figure 3 of the present article shows symmetric energy

curves for the three-electron molecule He2
+. The PBE GGA

and TPSS meta-GGA show shape errors in comparison with
CCSD�T� that are similar to their errors for H2

+. Similar
shape errors for He2

+ are made by LSDA �Fig. 4�. At infinite
separation, the LSDA, PBE, and TPSS symmetric energy
curves are below the asymmetric ones by about 97, 94, and
93 kcal/mol, respectively. This corresponds to a strongly
upward-curved E�N�-E�2� for He between N=1 and 2 �as
expected for semilocal approximations; see Fig. 2�. These
errors are very substantially removed by the original or
scaled-down self-interaction correction.

Figure 4 shows that the SIC total energy of He2
+ at large

bond lengths is the same for any scaling exponent k, includ-
ing the unscaled k=0. This follows because each dissociation

FIG. 3. Symmetric He2
+ ground-state energy curves �hartree� calculated with

TPSS, PBE, and scaled-down SIC �k=3� using the 6-311G�d , p� basis set.
We note that Perdew-Zunger �k=0� and scaled-down �k�0� SIC curves do
not change much from PBE to TPSS. For reference we also show the
almost-exact CCSD�T�/cc-pVQZ binding energy curve. The interatomic dis-
tances are in Å. The SIC-PBE and SIC-TPSS asymmetric dissociation en-
ergy limits, −4.889 and −4.901 hartree, respectively, are lower than the sym-
metric dissociation limit by 0.0178 and 0.0099 hartree �11.2 and
6.2 kcal/mol� for any value of k. The exact nonrelativistic dissociation limit
�R→�� has the energy of −4.904 hartree. The experimental equilibrium
bond length Re is 1.081 Å �Ref. 38�. Note that total energies are plotted
here. The various dissociation energies are compared in Table I.
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fragment He+0.5 has 1.5 �i.e., less than 2� electrons, and be-
cause our self-interaction-corrected functionals for all k re-
duce to that for k=0 in any ground state with 2 or fewer
electrons �Sec. III�. These functionals are nearly two-electron
self-interaction-free, like the Perdew-Zunger k=0 functional,
so they provide a greatly improved description of the disso-
ciation limit.

The self-interaction corrections make the symmetric dis-
sociation limit He+0.5

¯He+0.5 nearly degenerate with the
asymmetric one He+1

¯He0, although a small spurious dif-
ference remains. The LSDA SIC, PBE SIC, and TPSS SIC
�all k� asymmetric energies are lower by 2.4, 11.2, and
6.2 kcal/mol, respectively �see Fig. 3�. This means that the
energy of He+0.5 calculated with these methods is above the
straight line connecting E�He+� and E�He�. The LSDA SIC is
most nearly linear. The corresponding HF energy difference
is 14.6 kcal/mol, showing that HF is less linear here than
SIC.

Dissociation energies would normally be calculated as
E�He�+E�He+�−E�He2

+ equilibrium�. Table I shows that the
dissociation energies calculated in this way are high for un-
corrected LSDA, PBE GGA, and TPSS meta-GGA, but
rather realistic in comparison with the CCSD�T� standard
after any version of self-interaction correction. Table I also
shows how the SIC dissociation energies depend upon the
scaling exponent k for each common functional �see also Fig.
4�. The LSD SIC �k=0� value is significantly too large, as it
is for the less problematic molecules studied in Ref. 31. The
experimental data are taken from Ref. 38.

LiH+ is another three-electron molecular cation, but an
asymmetric one that dissociates to integer-charge fragments

�Li+1
¯H0� even without self-interaction correction �Fig. 3

of Ref. 13�. The exact dissociation limit �−7.780 hartree�
�Refs. 39 and 40� is well approximated by the TPSS SIC
�k=0 or 1� result �−7.781 compared to −7.786 hartree of the
uncorrected TPSS�. Figure 5 of the present article shows that
self-interaction correction has little effect on the binding en-
ergy curve. The total energy is exactly independent of the
scaling exponent k at large bond lengths �as it must be, since
each dissociation fragment has two or fewer electrons�, but
there is little effect of k even at the equilibrium bond length,
except in the LSDA SIC curves, where again k=0 exagger-
ates the atomization energy.

Ne2
+, like He2

+, is regarded as a “two-center, three-
electron bond.” In He2

+, the molecular orbital configuration is
�
g1s�2 �
u

*1s�1, while in Ne2
+, it is . . .�
g2p�2 ��u2p�4

��g
* 2p�4 �
u

*2p�1. The binding in Ne2
+ presumably comes

FIG. 4. He2
+ symmetric ground-state energy curves �hartree� calculated with

Perdew-Zunger SIC �k=0� and scaled-down SIC �k=1,2 ,3� LSDA using
the 6-311G�d , p� basis set. For reference we also show LSDA/6-311G�d , p�
and the almost-exact CCSD�T�/cc-pVQZ potential energy curve. The inter-
atomic distances are in Å. The exact nonrelativistic dissociation limit �R
→�� has the energy of −4.904 hartree. The experimental equilibrium bond
length Re is 1.081 Å �Ref. 38�. Note that total energies are plotted here. The
various dissociation energies are compared in Table I.

TABLE I. Dissociation energy �kcal/mol� of He2
+ calculated from E�He�

+E�He+�−E�He2
+ ,Re� using various methods. The semilocal density func-

tional approximations have been combined with Perdew-Zunger �k=0� and
scaled-down �k�0� SIC.

Method LSDAa PBEa TPSSa CCSD�T�b

No SIC 85.6 77.9 80.4 56.8
SIC�k=0� 62.3 52.2 57.5
SIC�k=1� 58.4 51.8 57.6
SIC�k=2� 56.1 51.6 57.7
SIC�k=3� 54.4 51.5 57.7

aCalculated with 6-311G�d , p� basis set.
bCalculated with cc-pVQZ basis set. The experimental dissociation energy
De is 57.0 kcal/mol �Ref. 38�.

FIG. 5. LiH+ ground-state energy curves �hartree� calculated with Perdew-
Zunger SIC �k=0� and scaled-down SIC �k=1� applied to TPSS, PBE, and
LSDA using the 6-311G�d , p� basis set. The interatomic distances are in Å.
The exact nonrelativistic dissociation limit �Li+

¯H with R→�� has the
energy of −7.780 hartree �Refs. 39 and 40� �shown by an arrow�. �The
CCSD�T� /6-311G�d , p� total energy misses 67% of the correlation energy
of the Li+1s core due to basis set limitation, but this does not affect the
shape of the curve�.

104102-5 Density functional tests J. Chem. Phys. 126, 104102 �2007�

Downloaded 08 Mar 2007 to 152.66.63.71. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



from the three valence 
 orbitals, as in He2
+. However, the

symmetric dissociation product Ne+0.5 has more than two
electrons.

Figure 6 compares an accurate CCSD�T� symmetric dis-
sociation curve for Ne2

+ to those of the LSDA, PBE GGA,
and TPSS meta-GGA approximations. These approximations
make shape errors as in He2

+. Note that the energies on the
Ne2

+ figures �Figs. 6 and 7� are zeroed out at the sum of the
energies of the integer-charge dissociation fragments �Ne+1

and Ne0�, unlike the preceding Figs. 3–5 for He2
+ and LiH+.

At large distances, the shape error grows to a compound
midpoint error of about 90–100 kcal/mol depending on the
functional, corresponding to strongly upward-curved
E�N�-E�10� for Ne with 9�N�10. The experimental data
are taken from Ref. 41.

Figure 7 shows what happens to the symmetric dissocia-
tion curve of Ne2

+ when we apply self-interaction corrections.
The Perdew-Zunger �k=0� corrections greatly improve the
shape and the atomization energy, and LSDA SIC �k=0�
nearly reproduces the degeneracy between Ne+0.5

¯Ne+0.5

and Ne+1
¯Ne0 �with less than 4 kcal/mol difference�. But

even a minor scaling down �k=1� destroys the good SIC �k
=0� shapes �making 2E�Ne+0.5�−E�Ne�−E�Ne+1� about
equal to −40 kcal/mol, corresponding to an upward-curved
E�N�−E�10��. That is because the dissociation fragment
Ne+0.5 has more than two electrons, and the scaled-down SIC
is not M-electron self-interaction-free for M �2. The
HF/6-311+G�3df� model has the opposite compound mid-
point error �2E�Ne+0.5�−E�Ne�−E�Ne+1�= +36 kcal/mol,
corresponding to a downward-curved E�N�-E�10��.

V. EXCHANGE-CORRELATION HOLE SUM RULES
AND M-ELECTRON SELF-INTERACTION
FREEDOM

The original unscaled Perdew-Zunger SIC sets �i=1 in
Eq. �2�, so it shares with Hartree-Fock theory the self-
Coulomb correction −�iU�ni�, and this choice is special.

Following the arguments of Sec. 2 C of Ref. 23, the
scaled-down SIC exchange-correlation hole density around
an electron at r satisfies the sum rule,


 dr�xc
SIC�r,r�� = − 1 + �

i

�i�1 − f i�f i��i�r��2/n�r� , �7�

which reduces to −1 for all f i=0 or 1 but to a value between
−1 and 0 for a system of fractional electron number. The
choice �i=1 �original unscaled PZ SIC� makes the SIC sum
rule identical to that for the Hartree-Fock theory �Eq. �48� of
Ref. 23� and very similar to that of the exact density func-
tional theory, compare Eqs. �84� and �101� of Ref. 16 �or see
Eq. �37� of Ref. 42�. The common semilocal density func-
tionals have hole densities �e.g., Ref. 43� that integrate to −1.
The exchange-correlation energy,

Exc = 1
2 
 dr
 dr� · n�r�

xc�r,r��
�r� − r�

, �8�

is sensitive44 to the sum rule on xc �and, to a lesser extent, to
the detailed shape of xc�. As the right-hand side of Eq. �7�
becomes less negative, the right-hand side of Eq. �8� tends to
do the same. That is what makes it possible for the PZ SIC
approximation to be nearly M-electron self-interaction-free
for all M. Any scaling down of this term loses this desirable
property, restoring part of the M-electron self-interaction er-
ror of the semilocal functionals. From this perspective, the

FIG. 6. Ne2
+ ground-state E�Ne2

+ ,R�−E�Ne�−E�Ne+� symmetric dissociation
curves �kcal/mol� calculated with TPSS, PBE, LSDA, and CCSD�T� using
the 6-311G�d� basis set. The interatomic distances are in Å. The experimen-
tal dissociation energy De is 32.2±1.0 kcal/mol, and the equilibrium bond
length Re is 1.765 Å �Ref. 41�.

FIG. 7. Ne2
+ ground-state E�Ne2

+ ,R�−E�Ne�−E�Ne+� symmetric dissociation
curves �kcal/mol� calculated with Perdew-Zunger SIC �k=0� and scaled-
down SIC �k=1 and 2� applied to TPSS, PBE, and LSDA using the 6-311
+G�3df� basis set. We note that Perdew-Zunger �k=0� and scaled-down
�k�0� SIC curves do not change much from PBE to TPSS. Using a smaller
6-311G�d� basis set introduces a small 1–2 kcal/mol upward shift in the
curves around the equilibrium distance. The interatomic distances are in Å.
The experimental dissociation energy De is 32.2±1.0 kcal/mol, and the
equilibrium bond length Re is 1.765 Å �Ref. 41�.
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unitarily invariant SIC that we proposed in Ref. 32 is also
suspect. �Invariance of the energy and density under unitary
transformation of the occupied orbitals of each spin is a fea-
ture of the Hartree-Fock �or Kohn-Sham� theory when the
noninteracting wave function is a single Slater determinant.
For fractional occupation numbers f i, however, one must use
the energy-minimizing localized orbitals to evaluate these
properties and Eq. �7�.�

We can see something more in Eq. �7�. Suppose that
only one orbital is fractionally occupied: f =N−M +1. Then
f�1− f�= �N−M +1� �M −N� is a downward-curving pa-
rabola, vanishing at N=M and M −1, that �with the right
positive coefficient� can additively correct the upward-
curving parabola of the semilocal approximation for E�N�
pictured in Fig. 2. A similar argument45 explains the close
connection between SIC and a simplified LDA+U method;
see also Ref. 46.

Hartree-Fock theory has been extended23 to open sys-
tems by using normalized orbitals localized on each open
system and fractional occupation numbers f i in the range of
0� f i�1. Figure 8 of Ref. 47 and Fig. 2 of the present article
for 4�N�5 suggest that Hartree-Fock energies vary some-
what linearly between adjacent integer electron numbers. In
fact, the Hartree-Fock total energy as a function of electron
number N between the integers M −1 and M is not linear and
can even curve downward,25,26,47 unlike the strong upward
curving of the semilocal energy in Fig. 2. For one example,
see 5�N�6 in Fig. 2. For another example, Fig. 1 and
Table V of Ref. 26 show that, in the Hartree-Fock theory, the
energy of Ne+0.5

¯Ne+0.5 is 35 kcal/mol above that of
Ne+1

¯Ne+0. This means that, within the Hartree-Fock
theory, symmetry breaking25,26 can produce a proper disso-
ciation limit for the binding energy of charged symmetric
radicals. Because Hartree-Fock theory is more favorable to
integer electron number, it can also avoid the spurious
fractional-charge dissociations of asymmetric neutral mol-
ecules found from semilocal approximations, as shown in
Fig. 4 of Ref. 19. The Hartree-Fock exchange hole satisfies23

the sum rule of Eq. �7� with �i=1, reminding us that
M-electron self-interaction freedom for all M requires not
only the �i=1 sum rule but also a treatment of correlation �as
pointed out, for example, in Refs. 25, 28, and 47�.

VI. CONCLUSIONS

A density functional for the exchange-correlation energy
is nearly M-electron self-interaction-free if it yields a realis-
tic, nearly linear variation of the total energy with electron
number N between the integers M −1 and M. Our results
show that a universally useful approximate functional must
be nearly M-electron self-interaction-free for all M. Com-
mon approximations �LSDA, GGA, meta-GGA, and global
hybrid� are not even one-electron self-interaction-free. The
midpoint energy error for a compact open system X,
E�X;M-0.5�− �E�X;M�+E�X;M −1�� /2, provides a useful
but incomplete quantification of nonlinearity for M −1�N
�M.

The Perdew-Zunger self-interaction correction23 �SIC�
makes these common approximations exactly one- and �at

least for atoms� nearly M-electron self-interaction-free �M
�1�. As shown here the latter property is not a consequence
of the former. Separate work on the hyper-GGA �Ref. 21�
shows that one-electron self-interaction-free approximations
can easily fail to be even two-electron self-interaction-free.

In this work, we have tested our scaled-down31 Perdew-
Zunger SIC, which is exactly one- and nearly two- but not
many-electron self-interaction-free. This scaling can improve
equilibrium properties and preserve good energy barriers.31

Self-interaction errors in binding energy curves are most
severe when dissociation leaves a noninteger electron num-
ber on each dissociation fragment. In LiH+, where the disso-
ciation fragments have integer electron numbers, the com-
mon functionals and the tested SIC’s work reasonably. In H2

+,
where dissociation leaves half an electron on each fragment,
the common functionals fail badly but all one-electron self-
interaction-free methods are exact. In He2

+, where dissocia-
tion leaves 1.5 electrons �or more generally between 1 and 2�
on each fragment, all nearly two-electron self-interaction-
free methods are accurate. But in Ne2

+, where dissociation
leaves more than two electrons on each fragment, only the
original, unscaled Perdew-Zunger SIC is qualitatively cor-
rect. We found similar functional performances in separate
studies19 of the spurious fractional-charge dissociation of a
molecule XY �Y�X�.

Common semilocal density functionals are accurate for
compact systems of integer electron number, such as atoms
and molecules near equilibrium. But they fail for certain
stretched bond situations, including stretched X2

+, because
they make the total energy variation fall below a straight line
for electron numbers N between integers M and M −1 in a
fragment of the stretched system, so that the midpoint energy
error for X is negative. That in turn is because they are based
upon exchange-correlation hole densities that integrate to −1,
even in open systems of fluctuating electron number where
the exact hole should integrate to a value between 0 and −1.
�Of course the hole density integrates to −1 over any system
of fixed electron number, but a fragment does not have fixed
electron number so part of the hole around an electron in one
fragment is located on other fragments, as shown for
stretched H2

+ in Fig. 3 of Ref. 25.� The original and unscaled
Perdew-Zunger SIC and the Hartree-Fock approximation are
based upon holes with a more correct sum rule, so they pro-
duce energy variations that are either nearly linear or �in the
case of Hartree-Fock theory� can lie above the straight line
connection.

The Hartree-Fock or exact-exchange-only approximation
is also one-but not many-electron self-interaction-free. Its
midpoint energy error is small for one- and two-electron
ground-state densities but can be large and positive for
many-electron densities. When this error is positive, symme-
try breaking can improve the description of stretched X2

+ by
minimizing the energy with integer electron numbers on the
fragments �e.g., X+1

¯X0�.25

It remains a problem to construct functionals that are
accurate for compact systems both at and between integer
particle numbers. The long-range-corrected hybrid function-
als �e.g., Refs. 48 and 49� treat the long-range part of the
Coulomb interaction in the Hartree-Fock theory. They are
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not exactly one-electron self-interaction-free, but may or
may not be nearly M-electron self-interaction-free for all M,
and are reasonably accurate for the binding energy curves of
H2

+,48 Ar2
+,49 etc. It remains to be seen if hyper-GGA’s �Refs.

21, 50, and 51� are nearly M-electron self-interaction-free.
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