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The  Perdew-Burke-Ernzerhof (PBE)  generalized gradient approximation for  the
exchange-correlation energy functional has two nonempirical constructions, based on satisfaction of
universal exact constraints on the hole density or on the energy. We show here that, by identifying
one possible free parameter in exchange and a second in correlation, we can continue to satisfy these
constraints while diminishing the gradient dependence almost to zero (i.e., almost recovering the
local spin density approximation or LSDA). This points out the important role played by the
Perdew-Wang 1991 nonempirical hole construction in shaping PBE and later constructions. Only
the undiminished PBE is good for atoms and molecules, for reasons we present, but a somewhat
diminished PBE could be useful for solids; in particular, the surface energies of solids could be
improved. Even for atoms and molecules, a strongly diminished PBE works well when combined
with a scaled-down self-interaction correction (although perhaps not significantly better than
LSDA). This shows that the undiminished gradient dependence of PBE and related functionals
works somewhat like a scaled-down self-interaction correction to LSDA. © 2007 American

Institute of Physics. [DOI: 10.1063/1.2743985]

I. INTRODUCTION

Kohn-Sham density functional theoryl’2 is widely used
in ground-state quantum chemistry and condensed matter
physics because of its computational simplicity and the use-
ful accuracy of its common semilocal approximations to the
exchange-correlation energy E,. as functionals of the elec-
tron spin densities 7(r) and n|(r). In terms of total electron
density n(r)=n;(r)+n(r) and exchange-correlation energy
density n(r) &,(r), this functional is

Exc=fdr n(r)e(r). (1)

The simplest approximations are semilocal ones, in which
£,.(r) is constructed from the electron densities and orbitals
in an infinitesimal neighborhood of r. A ladder of semilocal
approximations of increasing accuracy and complexity has
been constructed nonempirically, by satisfying exact con-
straints on E,.. The three rungs of this ladder are the local
spin density approximation (LSDA),"? the generalized gra-
dient approximation (GGA) in the versions of Perdew and
Wang 1991 (PWO91) (Refs. 4 and 5) or Perdew, Burke, and
Ernzerhof (PBE),S’6 and the meta-GGA in the version of Tao,
Perdew, Staroverov, and Scuseria (TPSS).’

To make semilocal functionals exact for all one-electron
densities, Perdew and Zunger (PZ) proposed an orbital-by-
orbital self-interaction correction (SIC).8 Recently, we have
proposed a way to scale down this SIC in many-electron
regions, to improve its performance for molecules near equi-
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librium geometlries.9 The strength of the scaling is controlled
by a non-negative parameter k, which equals O in the original
PZ SIC. k>0 ensures that the correction vanishes for a uni-
form density, independent of the type of orbitals used. The
optimal value of k& may differ for different properties and
functionals, but its typical suggested values lie between 1/2
and 3. Especially good results for atomic total energies, mo-
lecular atomization energies, the heights of energy barriers,
bond lengths, ionization potentials, and electron affinities
were obtained with LSDA-SIC(k=2), a choice with desirable
formal properties (vide infra).”

The question remains whether there are any plausible
modifications of PBE GGA or TPSS meta-GGA that might
work even better with scaled-down SIC while keeping desir-
able formal properties of the functional. We show here that a
diminished gradient dependence (moving PBE or TPSS in
the direction of LSDA) can be achieved while satisfying
most or all exact constraints; this is a result of interest in
itself. We then test these diminished functionals in combina-
tion with scaled-down SIC.

Il. NONEMPIRICAL SEMILOCAL FUNCTIONALS
AND THE CONSTRAINTS THEY SATISFY

In LSDA, the local ingredients or arguments of &,.(r)
are just the local electron spin densities nT(r) and n l(r).
&xc(ny,n)) is taken to be the exchange-correlation energy per
particle of an electron gas with uniform spin densities n; and
n|. This choice makes LSDA exact in the only limit in which
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it can be and essentially exact for densities that vary slowly
over space. But LSDA also satisfies other exact conditions.’
(a) Its exchange term scales properly under uniform scaling
of the density. (b) Its exchange term also scales properly
under spin scaling. (c) Its exchange and exchange-correlation
energies respect the Lieb-Oxford lower bound for all pos-
sible densities. (d) Its exchange-correlation energy is almost
correct for the linear response of a spin-unpolarized uniform
electron gas, i.e., for small amplitude (and not too rapid)
variations around the uniform density. For a discussion of the
exact constraints on E,. and original references for them, see
Refs. 6 and 7.
The exchange-correlation energy

——fdrfdrn (') )
—I‘|

depends upon the density nxc(r,r’) at r’ of the exchange-
correlation hole around an electron at r. LSDA inherits its
hole density from the uniform gas, and so satisfies the hole
constraints

n(r,r') <0, (3)
fdr’ n(r,r')=-1, (4)
fdr’ n(r,r')=0, (5)

where the sum rules (4) and (5) are for a closed system of
fixed electron number. For a discussion of the exact con-
straints on n,. and original references for them, see Refs. 4
and 5.

For an electron gas of slowly varying density, E,. and
n,. have expansions in powers of the density gradients. The
relevance of these expansions to atoms, molecules, and sol-
ids has recently been established.'” LSDA is the zero-order
term. Thus the natural second rung on Jacob’s ladder of ap-
proximations is the GGA, which adds the ingredients Vr,(r)
and Vn (r) for &,.(r). The PW91 GGA starts from the gra-
dient expansions of n,(r,r’) and n.(r,r’) to second order in
V., and then introduces sharp radial and angular cutoffs of the
spurious long-range (large |r’—r|) parts to satisfy Egs.
3)-(5).

The PBE GGA was constructed to be similar to PW91 in
the physical range of densities and gradients, but to satisfy
conditions (a)—(d), plus two more: (¢) The PBE correlation
energy recovers the correct second-order gradient expansion
for slowly varying densities. (f) Under uniform scaling to the
high-density limit, the PBE GGA correlation energy properly
scales to a constant for a finite system (while the LSDA
diverges).

The gradient dependences of and are opposite
in sign and partly cancel. This makes EPBE somewhat more
local than EEBE (and also somewhat more accurate).

The third rung of the ladder is the meta-GGA, which
adds the positive orbital kinetic energy densities 7(r) and
7,(r) as further local ingredients of &,.(r). The TPSS meta-
GGA satisfies conditions (a)—(f), plus several more: (g) The

EPBE EPBE
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gradient expansion of E, is correct to fourth order in V for a
slowly varying electron density. (h) The exchange potential
is properly finite at a nucleus. (i) The exchange energy is
exact for the H atom (but not for all one-electron densities).
(j) The correlation energy vanishes for any one-electron den-
Sity.

For the PBE GGA and the TPSS meta-GGA, smooth
hole models'"*"? satisfying Eqgs. (3)-(5) have been con-
structed.

For closed compact systems of fixed electron number,
such as atoms or molecules around equilibrium, the nonem-
pirical semilocal (sl) functionals LSDA, PBE, and TPSS pro-
vide useful and increasing accuracy for E,, with an even
better accuracy for E,. due to error cancellation. But these
functionals fail for open systems of fluctuating electron num-
ber, as in highly stretched A3."*

lll. SCALED-DOWN SELF-INTERACTION
CORRECTION

The scaled-down self-interaction correction of Ref. 9 for
any sl functional is

ESIC = ESI [nT’nl] E Xao-{E [nmr’o] + U[nao']} (6)

where

Ulng,] = f f ap "ae Do) (7)

v’ -]

Here 71,,(r) =f 0] V4,(r)|? is an orbital density, £, is a Fermi
occupation number, and

W k
erzfdr|lzba(r(r)|2' (T_U)
To

is the scale-down factor. 7)'=|Vn,(r)|*/8n,(r) is the von
Weizsicker kinetic energy density for electrons of spin o.
Equation (6) reduces to the original PZ SIC of Ref. 8 when
k=0 (making x,,=1), and more generally for any one- or
spin-paired two-electron region (where TZV/ 7,=1, making
Xao=1). For many-electron regions, where 0< TZV/ T,<1,
any k>0 makes 0= x,,<1, and the PZ SIC is scaled down;
as k— oo, the PZ SIC in such regions is scaled down to zero.
The present choice of Eq. (8) is not unique and alternative
constructions are possible.23

The energy-minimized SIC orbitals, unlike the Kohn-
Sham orbitals, tend to localize on part of a system. Whether
such localization occurs for the uniform electron gas is un-
certain, although it seems likely.M_26 If it does, the exact
constraints of the semilocal functionals are expected to be
preserved when £ is an integer with k=2 for LSDA or PBE,
and k=3 for TPSS. (If it does not, then only k>0 is needed,
as also explained in Ref. 9.)

As mentioned at the end of Sec. I, the self-consistent
tests of Ref. 9 showed that the formally certainly correct
LSDA SIC(k=2) is remarkably accurate for compact closed
systems, while other combinations [including all PZ SIC
=SIC(k=0) combinations] are less successful. It was ob-
served earlier that PZ SIC works better for LSDA than for
other functionals.””** Although SIC(k) gives no correction to

I

1 (8)
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the exact E,., it does not follow that SIC(k) results must
improve with an improvement of the underlying semilocal
functional (e.g., from LSDA to PBE GGA to TPSS meta-
GGA). As explained in Ref. 9, these corrections involve
evaluation of E,, for an orbital density that contains nodes
and orthogonalization tails. LSDA has a limited sensitivity to
density variations. Functionals dependent explicitly on the
density derivatives such as GGA and meta-GGA are more
sensitive. Near the nodes of an orbital density are very large
dimensionless density gradients not heavily sampled in
ground-state total electron densities. This might lead to rela-
tively poorer performance of PBE SIC(k) or TPSS SIC(k).

Since SIC(k) is exact for any one-electron density, the
corrected binding energy curve for Hj becomes exact. The
original PZ SIC(k=0) works well for other stretched bond
situations involving open systems of fluctuating electron
number, but unfortunately SIC(k=2) typically provides only
about half of the needed correction for these situations.”**'
This has been explained21 in terms of a generalization&22 of
Eq. (4) to open systems of fluctuating electron number.

IV. DIMINISHED GRADIENT DEPENDENCE
OF SEMILOCAL FUNCTIONALS

Here we will discuss how to diminish the gradient de-
pendence of PBE GGA (and TPSS meta-GGA), while pre-
serving the constraints of Sec. II. We will use atomic units
(h=m=¢e*=1).

The PBE exchange energy for a spin-unpolarized density
is

EPM[n] = f drn(r)e™ (n(r)) FYP(s(r)), )

where £"(n)=-3(37n)"3/4 is the exchange energy per
electron of an unpolarized electron gas of density n, s
=|Vn|/2(37%)3n*3 is a dimensionless density gradient,

FPBE() =1+ k= /(1 + us*/ k) (10)

X

is an exchange-only enhancement factor, and w is a positive
constant.® FEBE(S) varies from 1+ us® at small s to 1+« at
large s. More generally, the PBE exchange energy is con-
structed from the universal spin-scaling relation

Elnyn]=(E[2n]+E[2n /2. (11)

Satisfaction of the Lieb-Oxford bound on E, for all possible

densities requires k <0.804. Close agreement (for s <3) with

PWO1 exchange requires k=0.804. In this paper, we propose

to diminish the gradient dependence by choosing any « in

the range 0 < «k=<0.804. k=0 recovers LSDA exchange.
The PBE correlation energy is

E " nyn 1= f drn(r)o;" (n(r),5(r))

+H(ry(r),s(r),«(r))], (12)

where £"(n,5) is the correlation energy per particle of an
electron gas with uniform density n and relative spin polar-
ization (=(n;—n))/n, r(r) is the local Seitz radius
(n=3/ 47'rri), and ¢ is another dimensionless electron density
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gradient® ~|Vn|/¢n™, where ¢=((1+0)*3+(1-0)*3)/2.
Moreover,

s, 1+—Af2}
H(ry,s,1) = y¢ IH{H tL+At2+(At2)2 } .

Y
where B and 7y are positive constants.’ Note that £"(n,s)
— y¢* In(r,) — — in the high-density limit. Finally,

A=yﬁa[exp(z)— 17", (14)

where z=—£"""/ y¢*. The original PBE choice is =1, which
closely matches PW91 correlation, and, in fact, « is invisible
in Ref. 6; it is only here that a(0<a=<1) has been intro-
duced. The high-density limit of ECGGA for a finite system
is a finite constant that diverges like y¢® In[a] as a—0.
[Compare Eq. 9 of Ref. 6; see also Ref. 29]. The small-7 limit
(B4*t?) of H is independent of a.
The r— o limit is

H— y¢*® ln{l + EA"}
Y
= y¢ In{1 + afexp(- ™/ y¢?) — 1]}. (15)

Thus « controls the large-gradient limit for correlation, as
does k for exchange. The original choice a=1 makes
H —>—s‘C‘"if as r—oo, in agreement with PW91. Reducing «
below 1 diminishes the gradient dependence of EEBE, making
the r— o0 limit of H fall between —s‘cl,“if and 0. Moreover, «a
—0 makes H—0 so that Eq. (12) recovers LSDA correla-
tion.

To guarantee satisfaction of the Lieb-Oxford bound on

E,. for all possible densities requires
2183(1 4+ k) +0.7174(1 — @) < 2.273, (16)

or a=1+1.7562 (k—0.804).

We refer to Egs. (10) and (14) with 0< k< 0.804 and
0<a<1 as diminished PBE (dPBE). We are especially in-
terested in dPBE SIC(k=2), which satisfies all of the PBE
constraints (a)—(f) of Sec. II [with the possible exception of
constraint (c)], plus constraint (j) and a stronger version of
constraint (i): Its exchange energy is exact for any one- or
two-electron ground-state density.

A simpler path from GGA to LSDA is simply to scale
the non-LSDA contributions to the GGA exchange and cor-
relation energies by scale factors ¢, and c., as in Becke’s
B3PWO1 (Ref. 30) functional. Applied to PBE, this approach
would lose the exact constraints (e) and (f) [as well as (d)
when ¢, differs from c_].

The PBE parameters « and « also appear and play the
same role in the TPSS meta-GGA, which can also be dimin-
ished by reducing them. TPSS exchange contains two other
parameters, ¢ and e, that were chosen to satisfy constraints
(h) and (i) from Sec. II. But with a scaled-down self-
interaction correction to TPSS, these constraints will be sat-
isfied for any positive values of ¢ and e, which could be
treated then as additional free parameters.
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TABLE I. Mean absolute error (MAE) and mean error (ME) in kcal/mol for the AE6 test set of six represen-
tative atomization energies of molecules and for the BH6 test set of six representative barrier heights of
chemical reactions. The mean atomization energy of AE6 is 517.2 kcal/mol, and the mean barrier height of
BH6 is 11.9 kcal/mol. The functionals include the PBE hybrid (PBEh) with 25% exact exchange. The dPBE
calculations use self-consistent orbitals from LSDA SIC(k=2). The 6-311+G(3df,2p) basis set is used, except
where smaller basis sets have been noted. Some non-dPBE values were taken from Ref. 9. 1 hartree

=627.5 kcal/mol.

AE6* BH6"
Functional K a ME MAE ME MAE
LSDA 0.000 0.0 773 713 -17.9 17.9
dPBE GGA 0.02 0.4 74.4 74.4 -19.0 19.0
dPBE GGA 0.05 0.2 63.7 63.7 -172 17.2
PBE GGA 0.804 1.0 12.4 15.5 -95 95
PBE GGA® 0.804 1.0 11.7 14.9 -93 93
PBE GGA® 0.804 1.0 10.8 14.7 -9.0 9.0
PW91 GGA? 12.2 15.0 -93 93
TPSS meta-GGA 0.804 1.0 4.1 5.9 -85 8.5
TPSS meta-GGA® 0.804 1.0 -0.8 5.1 -8.6 8.6
TPSS meta-GGA® 0.804 1.0 1.9 5.8 -8.0 8.0
PBEh 0.804 1.0 0.6 6.2 -48 438
PBER! 0.804 1.0 -33 7.2 42 42
LSDA SIC(k=0) 0.000 0.0 57.7 60.3 -52 5.2
LSDA SIC(k=2) 0.000 0.0 6.7 8.6 2.8 47
PBE SIC(k=0) 0.804 1.0 -13.6 17.0 -0.1 42
PBE SIC(k=2) 0.804 1.0 13.5 16.0 -6.5 6.5
dPBE SIC(k=2) 0.02 0.4 -8.1 12.7 -14 3.4
dPBE SIC(k=2) 0.05 0.2 1.6 6.0 34 3.9

“The six molecules in the AE6 test set are SiH,, S,, SiO, C3H, (propyne), C,H,0, (glyoxal), and C,Hg

(cyclobutane).

"The BH6 set of barrier heights consists of the forward and reverse barriers for three reactions: OH+CH,

— CH;+H,0, H+OH—H,+0, and H+H,S —H,+HS.

°6-311G(d, p) basis set.
46-31G(d) basis set.

V. RESULTS FOR ATOMIZATION ENERGIES,
BARRIER HEIGHTS, AND SURFACE ENERGIES

As a test of these ideas, we have chosen the AE6 test
set’! of representative atomization energies of molecules and
the BH6 set’’ of representative barrier heights of chemical
reactions, as also used in Ref. 9. The six molecules in the
AES6 test set are SiHy, S,, SiO, C3H, (propyne), C,H,0,
(glyoxal), and C4,Hg (cyclobutane). The BH6 set of barrier
heights consists of the forward and reverse barriers for three
reactions: OH+CH,;— CH;+H,0, H+OH—H,+0, and H
+H,S —H,+HS.

All calculations were carried out with the developmental
version of the Gaussian molecular program.32 Due to the
heavy computational demand of SIC calculations, we have
performed only non-self-consistent SIC calculations here.
The dPBE calculations use self-consistent orbitals from
LSDA SIC(k=2), as computed in Ref. 9. This choice was
justified by showing that less than 0.2 kcal/mol differences
can be observed in the mean errors (MEs) and mean absolute
errors (MAEs) compared to self-consistent results. The
6-311+G(3df,2p) basis sets has been used in the calcula-
tions, and the effect of the smaller basis sets 6-31G(d) and
6-311G(d,p) has been investigated.

The diminished functionals require the same CPU time
and memory as their undiminished counterparts, i.e., no extra

computational effort. The SIC calculations require consider-
able extra computational effort, as discussed in Ref. 9. The
AEG6 results in Table I show a moderate basis-set depen-
dence. The strong overbinding tendency of PBE and the
moderate overbinding tendency of TPSS are slightly com-
pensated by the basis-set errors of the smaller 6-31G(d) and
6-311G(d,p) basis sets, as observed in Ref. 33. PW91 gives
results very similar to and only slightly worse than those of
PBE. The PBEh functional requires large basis sets for good
AES6 results, as is typical for hybrid functionals.

We tested the dPBE SIC(k=2) functional for all 0<k
=<0.804 and 0= a =< 1. The best MEs and MAEs are shown
in Table I. We have found that dPBE SIC(k=2) with &
=0.05 and a=0.2 gives the best atomization energies, and
nearly the best barrier heights, when combined with the for-
mally certainly correct scaled-down SIC(k=2). The best bar-
rier heights of chemical reactions were obtained with «
=0.02 and a=0.4, although these parameters give quite poor
atomization energies (see Table I). Therefore, the «=0.05
and @=0.2 combination is optimal for the AE6 set and leads
to only moderate worsening of the results for the BH6 set.

Our new dPBE SIC (k=2) results are considerably better
than PBE SIC (k=2) and are slightly better than those of
LSDA SIC (k=2) also shown in Table I. But the latter small
improvement could be an artifact of fitting to small data sets.
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dPBE kappa=0.05, alpha=0.2
55 zeta=0
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FIG. 1. Diminished PBE (dPBE) enhancement factor of Eq. (17) for fully
spin-unpolarized ({=0) densities, showing a strong resemblance to LSDA.
k=0.05 and @=0.2, close to the optimal values for SIC(k=2).

We also tested dTPSS SIC (k=3) and found that no param-
eter combinations gave satisfactory barrier heights. We ob-
served in general that SIC (k=3) scales down the self-
interaction correction too strongly; although a smaller &
gives better barriers, it may be formally unsatisfactory with
TPSS, as discussed in Sec. III.

For any system that is fully spin-unpolarized ({=0) or
fully polarized ({=1), we can visualize a GGA by plotting its
exchange-correlation enhancement factor F,., where

E,.= f drng"™ (n)Fo(ry,s,s). (17)
Figures 1 and 2 plot the dPBE (k=0.05, @=0.2) F,_ versus s

dPBE kappa=0.05, alpha=0.2
zeta=1

2.0
1.75+
: rs=50
e i |
\E/ 1.5—_ rs=10
S ] FEEEE =5
A rs=1
_ 15=0
1.25-
1,0|1|||||||]|||1||||||||1|||1|ﬁ—|
0.0 0.5 1.0 15 2.0 2.5 3.0

FIG. 2. Diminished PBE (dPBE) enhancement factor of Eq. (17) for fully
spin-polarized ({=1) densities, showing a strong resemblance to LSDA. «
=0.05 and @=0.2, close to the optimal values for SIC(k=2).
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a=0.2

5 | ——ME
0 - -o—MAE

Error

-8 .
0.04

T =7l

0.06 0.08 0.10

K

FIG. 3. Mean absolute error (MAE) and mean error (ME) of atomization
energies of the AE6 test set computed with the dPBE SIC(k=2) functionals
with @=0.2 and 0.02=< k=<0.1. All calculations use self-consistent orbitals
from LSDA SIC(k=2). The 6-311+G(3df,2p) basis set is used. (All results
are in kcal/mol.)

for various values of ry, for the cases {=0 and 1, respec-
tively. The curves are nearly horizontal straight lines, very
close to LSDA and not to the original PBE (Fig. 1 of Ref. 6).

Figures 3 and 4 show how the dPBE SIC(k=2) errors
depend upon « and « for the AE6 set. The well-defined mini-
mum is clearly visible. For the BH6 set, similar curves were
produced (not shown here) with a slightly shifted minimum
to k=0.02 and a=0.4. The BH6 MAE versus « curve is
quite flat, changing only a few tenths of a kcal/mol in the
range of 0.2<a=<0.5. The results start to worsen consider-

14 5 x=0.05
12 4 - ME

-—MA
10 +

8_
— /
£ 6
w

T

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
a

FIG. 4. Mean absolute error (MAE) and mean error (ME) of atomization
energies of the AE6 test set computed with the dPBE SIC(k=2) functionals
with 0.05=< «@=<0.4 and x=0.05. All calculations use self-consistent orbitals
from LSDA SIC(k=2). The 6-311+G(3df,2p) basis set is used. (All results
are in kcal/mol.)
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TABLE II. Jellium surface exchange o, and exchange-correlation energies
0, (erg cm™2) for LSDA, dPBE(k=0.05,@=0.2), PBE, and TPSS (assumed
exact, see also Ref. 12). ry is the bulk density parameter defined in the text.
Exact x values are from Ref. 40. The RPA +xc values from Ref. 41 could be
as or more accurate than TPSS values (1 a.u.=1.557 X 10° ergs cm™2).

Method o 2 3 4 6
LSDA X 3037 669 222 43.0
dPBE X 2809 599 192 33.7
PBE X 2438 468 128 11.8
TPSS X 2553 498 141 15.4
Exact X 2624 526 157 22
LSDA Xc 3354 764 261 53
dPBE Xc 3463 805 282 60.9
PBE Xc 3265 743 252 52
TPSS Xc 3380 772 266 55
RPA+ Xc 3413 781 268 54

ably for a=<0.2. The ME for the BH6 set remains always
negative, showing the systematic underestimation of the bar-
rier heights by the proposed dPBE SIC(k=2) (see Table I).
We observed that selecting the original PBE « and decreas-
ing a below 1 can slightly improve atomization energies
over the original PBE. But this leads to a violation by dPBE
of constraint (c) of Sec. II.

To see if dPBE SIC(k=2) could also be useful for ex-
tended systems, we consider the surface exchange-
correlation energy o, of a semi-infinite jellium with a planar
surface, for which the scaled-down SIC should vanish. Table
II shows o, for several bulk densities n=3/ 477rf,. While the
exact value of o, is imperfectly known, there are reasons>’
to believe that the TPSS meta-GGA value is close to exact.
Table II shows that, while PBE o, values are too low, dPBE
values are too high. However, the errors are moderate and
not severe. PBE and dPBE (x=0.05, @=0.2) have better
exchange-only o, contributions than does LSDA, with PBE
too low and dPBE (like LSDA) too high. From Table II, it is
clear that some level of diminished gradient dependence can
achieve accurate exchange-correlation surface energies. In
particular, the combinations dPBE (k=0.05, @=0.1) or dPBE
(k=0.1, @=0.2) give surface energies that show excellent
agreement with the TPSS jellium surface exchange-
correlation energies o, shown in Table II, and there are
other combinations with larger x(x=0.35) that additionally
agree with the exact o,.

V1. CONCLUSIONS

We have identified two parameters (x in PBE exchange,
and « in PBE correlation) that can be reduced from their
original values, diminishing the gradient dependences while
preserving the exact constraints satisfied by the original PBE.
The best diminished PBE (dPBE) for a scaled-down self-
interaction correction (k=2) turns out (k=0.05, a=0.2) to be
close to LSDA. The scaled-down SIC is not available in
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publicly released codes, and we do not recommend it for
general use without further reduction of its high cost/
performance ratio.

Because the optimal dPBE is so much like LSDA, it
would be easy to construct for it a LSDA-like exchange-
correlation hole that satisfies Egs. (3)—(5). Evidently then the
PWO1 and PBE constraints leave a lot of freedom for the
gradient correction to LSDA. Nevertheless, the original PBE
GGA represents a choice that depends only on fundamental
constants (without empirical parameters) and also one that
agrees closely with PWO91, constructed using sharp real-
space cutoffs of the gradient expansions for the exchange
and correlation holes. When no self-interaction correction is
made, the original PBE is also much more accurate for atoms
and molecules than is LSDA (or dPBE).

We interpret these findings as follows: In an atom or
small molecule, the density itself is cut off by the small size
of the system, leading to a rapid cutoff of the long-range
parts of the exchange and correlation holes. The original
PWO1 (based on a sharp cutoff of the long-range parts of the
gradient expansions for the holes) and PBE (modeled in part
upon PW91) mimic this behavior, and so build into GGA
some of the same self-interaction correction to LSDA that is
provided alternatively by scaled-down SIC(k=2). In a solid
the exchange-correlation hole can be more diffuse, so a
dPBE intermediate between PBE and LSDA, without self-
interaction correction, could be usefully accurate. In fact,
smoothing the radial cutoff of the long-range part of the gra-
dient expression for the hole can also diminish the gradient
dependence of the GGA’ Starting from that observation,
Refs. 35 and 36 found improved lattice constants from PBE
with a diminished «. There have been other recent construc-
tions of GGA’s exclusively for solids.””™

We have found that, for the construction of useful
semilocal density functionals beyond LSDA, the known uni-
versal constraints do not suffice without additional physical
input (insights, fitting to data, or both). Reference 22 reaches
a similar conclusion for fully nonlocal functionals that can
satisfy further constraints not mentioned here. But the uni-
versal constraints still help the functionals to describe densi-
ties not envisioned by the functional developers.

ACKNOWLEDGMENTS

OTKA-NSF support is acknowledged by one of the au-
thors (G.I.C.). Another author (A.R.) acknowledges the sup-
port of OTKA (PD-050014). NSF support is acknowledged
by an author (J.P.P.) (DMR-0501588) and by two of the au-
thors (G.E.S. and O.A.V.) (CHE-0457030).

"W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

2A Primer in Density Functional Theory, edited by C. Fiolhais, F.
Nogueira, and M. Marques (Springer, Berlin, 2003).

3J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

*J. P. Perdew, in Electronic Structure of Solids, edited by P. Ziesche and H.
Eschrig (Akademie, Berlin, 1991), p. 11.

5J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533 (1996); 57,
14999(E) (1998).

°5. P Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865
(1996); 78, 1396(E) (1997).

7. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev.
Lett. 91, 146401 (2003).

Downloaded 28 Aug 2007 to 152.66.63.71. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



244107-7 Diminished gradient dependence

8J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

°0. A. Vydrov, G. E. Scuseria, J. P. Perdew, A. Ruzsinszky, and G. L.
Csonka, J. Chem. Phys. 124, 094108 (2006).

05 p, Perdew, L. A. Constantin, E. Sagvolden, and K. Burke, Phys. Rev.
Lett. 97, 223002 (2006).

""M. Ernzerhof and J. P. Perdew, J. Chem. Phys. 109, 3313 (1998).

"2L. A. Constantin, J. P. Perdew, and J. Tao, Phys. Rev. B 73, 205104
(2006).

R, Merkle, A. Savin, and H. Preuss, J. Chem. Phys. 97, 9216 (1992).

"], P. Perdew and M. Ernzerhof, in Electron Density Functional Theory:
Recent Progress and New Directions, edited by J. F. Dobson, G. Vignale,
and M. P. Das (Plenum, New York, 1998).

ST, Bally and G. N. Sastry, J. Phys. Chem. A 101, 7923 (1997).

'B. Braida, P. C. Hiberty, and A. Savin, J. Phys. Chem. A 102, 7872
(1998).

M. Griining, O. V. Gritsenko, S. J. A. van Gisbergen, and E. J. Baerends,
J. Phys. Chem. A 105, 9211 (2001).

8D. J. Tozer, N. C. Handy, and A. J. Cohen, Chem. Phys. Lett. 382, 203
(2003).

M. Lundberg and P. E. M. Siegbahn, J. Chem. Phys. 122, 224103 (2005).

04, Ruzsinszky, J. P. Perdew, G. I. Csonka, O. A. Vydrov, and G. E.
Scuseria, J. Chem. Phys. 125, 194112 (2006).

*'A. Ruzsinszky, J. P. Perdew, G. I. Csonka, O. A. Vydrov, and G. E.
Scuseria, J. Chem. Phys. 126, 104102 (2007).

25 p, Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria,
V. N. Staroverov, and J. Tao, arXiv:cond-mat/0702283.

Z0. A. Vydrov and G. E. Scuseria, J. Chem. Phys. 124, 191101 (2006).

J. Chem. Phys. 126, 244107 (2007)

M. R. Norman, Phys. Rev. B 28, 3585 (1983).

2] G. Harrison, Phys. Rev. B 35, 987 (1987).

M. R. Pederson, R. A. Heaton, and J. G. Harrison, Phys. Rev. B 39, 1581
(1989).

270. A. Vydrov and G. E. Scuseria, J. Chem. Phys. 121, 8187 (2004).

0. A. Vydrov and G. E. Scuseria, J. Chem. Phys. 122, 184107 (2005).

YV, N. Staroverov, G. E. Scuseria, J. P. Perdew, E. R. Davidson, and J.
Katriel, Phys. Rev. A 74, 044501 (2006).

%A, D. Becke, J. Chem. Phys. 98, 5648 (1993).

*IB. J. Lynch and D. G. Truhlar, J. Phys. Chem. A 107, 8996 (2003); 108,
1460(E) (2004).

M. 7. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN Development
Version, Revision D.02, Gaussian Inc., Wallingford, CT, 2004.

¥6. L Csonka, A. Ruzsinszky, and J. P. Perdew, Int. J. Quantum Chem.
101, 506 (2005).

BLAL Constantin, J. P. Perdew, and J. Tao, Phys. Rev. B 73, 205104
(2006).

¥p. L. Novikov, A. J. Freeman, N. E. Christensen, A. Svane, and C. O.
Rodriguez, Phys. Rev. B 56, 7206 (1997).

%E. L. Peltzer y Blancd, C. O. Rodriguez, J. Shitu, and D. L. Novikov, J.
Phys.: Condens. Matter 13, 9463 (2001).

*TA. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005).

7. Wu and R. E. Cohen, Phys. Rev. B 73, 235116 (2006).

¥F D. Vila, J. J. Rehr, H. H. Rossner, and H. J. Krappe, arXiv:cond-mat/
0702397.

03, M. Pitarke and A. G. Eguiluz, Phys. Rev. B 63, 045116 (2001).

*17Z. Yan, J. P. Perdew, and S. Kurth, Phys. Rev. B 61, 16430 (2000).

Downloaded 28 Aug 2007 to 152.66.63.71. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



