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Semilocal density functional approximations �DFAs� for the exchange-correlation energy suffer
from self-interaction error, which is believed to be the cause of many of the failures of common
DFAs, such as poor description of charge transfer and transition states of chemical reactions. The
standard self-interaction correction �SIC� of Perdew and Zunger mends some of these failures but
spoils such essential properties as thermochemistry and equilibrium bond lengths. The
Perdew-Zunger SIC seems to overcorrect many-electron systems. In this paper, we propose a
modified SIC, which is scaled down in many-electron regions. The new SIC has an improved
performance for many molecular properties, including total energies, atomization energies, barrier
heights of chemical reactions, ionization potentials, electron affinities, and bond lengths. The local
spin-density approximation �LSDA� benefits from SIC more than higher-level functionals do. The
scaled-down SIC has only one adjustable parameter. Rationalization of the optimal value of this
parameter enables us to construct an almost-nonempirical version of the scaled-down SIC-LSDA,
which is significantly better than uncorrected LSDA and even better than the uncorrected
generalized gradient approximation. We present an analysis of the formal properties of the
scaled-down SIC and define possible directions for further improvements. In particular, we find that
exactness for all one-electron densities does not guarantee correct asymptotics for the
exchange-correlation potential of a many-electron system. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2176608�
I. INTRODUCTION

Practical applications of density functional theory �DFT�
are typically performed within the Kohn-Sham framework,1

which relies on approximations to the exchange-correlation
�xc� energy Exc��� ,���. These approximations are assigned
to various rungs of “Jacob’s ladder,”2 according to the num-
ber and kind of their ingredients. The lowest rung is the local
spin-density approximation �LSDA�, the second rung is the
generalized gradient approximation �GGA�, the third one is
meta-GGA, and so on. The first three rungs, collectively
known as semilocal approximations, are particularly popular
due to their very favorable accuracy-to-computational cost
ratio. For that reason, DFT is the method of choice to study
relatively large systems, where wave function methods are
unaffordable. As strange as it may sound, semilocal function-
als are often more accurate for large many-electron systems
than for systems with just one or a few electrons. A notorious
example is the dissociation curve of the simplest one-
electron molecule H2

+, for which common functionals predict
unphysical results.3 This is one of the manifestations of a
serious flaw in approximate xc functionals, known as self-
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interaction error �SIE�. SIE arises when one �or both� of the
following requirements are violated: for any one-electron
density �i�r�, an exchange functional Ex must obey

Ex��i,0� + J��i� = 0, �1�

and a correlation functional Ec must obey

Ec��i,0� = 0. �2�

J��� in Eq. �1� is the Coulomb interaction of an electron
density with itself,

J��� =
1

2
� � ��r���r��

�r − r��
drdr�. �3�

Because Eq. �3� is a fully nonlocal functional of the density,
the requirement of Eq. �1� cannot be exactly satisfied on the
first three rungs of the Jacob’s ladder. The requirement of Eq.
�2� can only be satisfied on the third or higher rungs.

If the SIE arose only in one-electron systems, it would
be easy to correct: one can explicitly evaluate the spurious
self-interaction terms and remove them. But the problem
manifests itself in many-electron systems as well. Unfortu-

nately, the SIE of a particular density functional approxima-
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tion �DFA� is much more difficult to quantify in a many-
electron system. There is no unique definition of the SIE and
no unique way to correct it.

In 1981, Perdew and Zunger4 �PZ� proposed to use den-
sities of occupied orbitals �i��r�= ��i��r��2 to define a self-
interaction correction �SIC� for any density functional ap-
proximation:

Exc
SIC-DFA = Exc

DFA���,��� − �
i�

occ

�J��i�� + Exc
DFA��i�,0�� . �4�

Although the PZ correction looks very simple, it is nontrivial
to implement and apply, since Eq. �4� is not invariant under a
unitary transformation of occupied orbitals. Orbitals mini-
mizing the PZ self-interaction corrected energy are usually
localized in shape. Reliable self-consistent implementations
of the PZ-SIC for molecules have become available only
recently, which made it possible to carry out systematic stud-
ies of its performance.5–10 It was found that the Perdew-
Zunger SIC improves the description of transition states of
chemical reactions6 and dissociation curves of odd-electron
systems,7,8 but it fails badly on some basic thermochemical
tests9,10 and predicts too short bonds in molecules.5,11 Over-
all, PZ-SIC often seems to overcorrect many-electron
systems.9,10,12 Notwithstanding this, the work of Perdew and
Zunger4 remains a major landmark in the development of the
density functional formalism. It was one of the sources of the
later discovery13 of the derivative discontinuity of the exact
exchange-correlation functional.

Recently, it was observed12 that scaling down the self-
interaction correction of Eq. �4� by a factor of 0.4 improves
the thermochemistry, although such a scaled SIC loses the
property of being exact for any one-electron density. This
problem is avoided in a more recent proposal2 to scale down
the SIC only in many-electron systems. Moreover, this alter-
native SIC is invariant under unitary transformations of or-
bitals. However, this nice feature comes at the price of a
great increase in computational demand.

In this paper, we introduce a simple method to scale
down the SIC in many-electron regions without a major in-
crease in complexity or cost over the Perdew-Zunger SIC.
We show that such a scaling improves many important prop-
erties of molecular systems.

II. METHODOLOGY

Aiming to scale down the Perdew-Zunger SIC in many-
electron regions, we propose a dimensionless scaling factor
evaluated for each orbital density �i��r�:

Xi�
k =� � ��

W

��
	k

�i��r�dr , �5�

where �� is the noninteracting kinetic energy density of
�-spin electrons,

���r� =
1

2�
i

���i��r��2, �6�

W
�� is the von Weizsäcker kinetic energy density,
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��
W�r� =

�����r��2

8���r�
, �7�

and k is a non-negative real number. ��
W and �� in Eq. �5� are

evaluated at the total spin density ��

���r� = �
i=1

N�

�i��r� . �8�

It is known that ���r�=��
W�r� in regions containing only one

electron of spin � �or more generally containing only orbitals
of spin � with the same shape�, and that ���r����

W�r� oth-
erwise. For a uniform density, ��

W�r�=0. The ratio ��
W /�� is

customarily used in construction of self-correlation-free �i.e.,
obeying Eq. �2�� meta-GGA functionals.14,15 This ratio was
also recently used as a mixing function in a local hybrid,16

with intent to eliminate the self-interaction error in the ex-
change component. The scaling factor of Eq. �5� satisfies

0 � Xi�
k � 1. �9�

The scaled-down self-interaction correction is defined as

Exc
SIC-DFA = Exc

DFA + ESIC, �10�

ESIC = − �
i�

occ

Xi�
k �J��i�� + Exc

DFA��i�,0�� . �11�

The derivatives of Eq. �11� with respect to orbital variations
can be easily obtained analytically, as shown in the Appen-
dix. The self-consistent implementation of the new correc-
tion is straightforward and requires only minor changes in
the previously developed PZ-SIC code.9 The Perdew-Zunger
SIC can be considered a special case of Eq. �11� with k=0.
The SIC of Eq. �11� properly vanishes when Exc

DFA is replaced
by the exact xc functional for any k�0.

The scaling factor Xi
k with k	0 ensures that the correc-

tion vanishes for a uniform density, independent of the type
of orbitals used. All the xc functionals we test in this work
are exact in the uniform density limit, so that no correction is
needed. In the limit of k→
, Xi

k will become zero for any
system other than a one-electron or a spin-compensated two-
electron system.

��
W /�� was first proposed as a scaling factor for the self-

interaction correction in Eq. �22� of Ref. 2, and our Eq. �11�
was intended as a computationally practical test of the prin-
ciple for that approach. We note that Eq. �5� is not the only
possible choice of a scaling factor. An even simpler version17

can be constructed by using �i� /�� instead of ��
W /�� in Eq.

�5�. This alternative choice, however, is not guaranteed to
vanish in the uniform density limit.

III. COMPUTATIONAL DETAILS

All calculations were carried out with a developmental
version of the GAUSSIAN program.18 We tested several xc
functionals, including LSDA in the Perdew-Wang 92
parameterization;19 the GGA of Perdew, Burke, and Ernzer-
hof �PBE�;20 the meta-GGA functional of Tao, Perdew,
Staroverov and Scuseria �TPSS�;15 and a hybrid of PBE with

25% of exact exchange �PBEh, also known as PBE0 or

AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



094108-3 Scaling down the SIC J. Chem. Phys. 124, 094108 �2006�
PBE1PBE�.21–23 All these functionals are nonempirical in the
sense that they have no parameter fitted to data sets. TPSS
correlation is already self-interaction-free, so only its ex-
change term is changed by Eq. �11�. All calculations used a
�99 590� unpruned integration grid. The 6-311+G�3df ,2p�
basis set is used in all tests, except atomic ionization poten-
tials �IPs� and electron affinities �EAs�, where the 6-311
+ +G�d� basis set is used. All calculations on open shells are
spin unrestricted. No spherical averaging of atomic orbital
densities is used in the present work. Deviations are defined
as “theory-experiment” and reported as mean errors �MEs�,
mean absolute errors �MAEs�, and root mean square errors
�RMSEs�.

IV. RESULTS

A. Magnitudes of the correction

The scaling factor Xi
k does not explicitly include any

dependence on the xc functional. Since SIC-minimizing or-
bitals look similar for different functionals, the Xi

k factor for
corresponding orbitals will assume similar values. Table I
shows values of Xi

k obtained in self-consistent calculations
on the Ar atom using three different xc functionals, with k
=1 and k=2. The dependence of the magnitude of ESIC on
the value of the parameter k is shown in Table II for the Ar
atom and the LSDA functional. It is clearly seen that the
magnitude of the correction is steadily scaled down as k
increases.

B. Total energies of atoms

The nonrelativistic total energies of all the atoms up to
Ar are known accurately.24 For all the theoretical methods
under investigation, we computed the errors in the total en-

TABLE I. Values of the Xi
k factor for different shells in the Ar atom. The

6-311+G�3df� basis set was used.

Functional Shell 1 Shell 2 Shell 3

SIC-LSDA �k=1� 0.6749 0.4428 0.5278
SIC-PBE �k=1� 0.6738 0.4433 0.5266
SIC-TPSS �k=1� 0.6707 0.4434 0.5274

SIC-LSDA �k=2� 0.5137 0.2377 0.3502
SIC-PBE �k=2� 0.5112 0.2378 0.3494
SIC-TPSS �k=2� 0.5078 0.2381 0.3504

TABLE II. Contributions to ESIC from different shells in the Ar atom, com-
puted with the SIC-LSDA functional and different values of k. The 6-311
+G�3df� basis set was used. All values are in hartrees.

Shell 1a Shell 2b Shell 3b Total

k=0 −1.4878 −1.0131 −0.1221 −2.6231
k=1/2 −1.1926 −0.6491 −0.0817 −1.9234
k=1 −1.0016 −0.4450 −0.0612 −1.5078
k=2 −0.7626 −0.2370 −0.0402 −1.0398
k=3 −0.6127 −0.1383 −0.0292 −0.7801

aFirst shell �1s� includes two electrons.
bSecond and third shells each include eight electrons in equivalent

3
sp -hybrid orbitals.
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ergies of 16 atoms from Li to Ar. The error for each atom
was divided by the number of electrons N and averaged
among the atoms in the set. After this division by N, the
absolute error can still grow with N, but more slowly than
before. The statistics thus obtained are presented in Table III.
The individual values of total energies are given in Ref. 25
To estimate the effect of incompleteness of the 6-311
+G�3df� basis set, we calculated total energies of several
atoms with a much larger aug-cc-pVQZ basis set. We found
that, for all theoretical methods studied, the increase of basis
set size results in energy lowering of less than 0.002 hartree/
electron, which will not dramatically change the qualitative
trends observed in Table III.

It is clear that scaling down the SIC reduces the errors in
total energies as compared to the original Perdew-Zunger
SIC �k=0�. The most remarkable improvement is observed
in the case of LSDA. The uncorrected LSDA functional pre-
dicts total energies that are too high, and the deviation
�calculated-exact� increases with the atomic number. On the
other hand, SIC-LSDA �k=0� energies are too low with an
increasingly negative deviation. With the scaled-down SIC,
total energies fall in between LSDA and SIC-LSDA �k=0�,
and thus much closer to the accurate values. Figure A of Ref.
25 illustrates the errors in total energies for SIC-LSDA func-
tionals with different k. The lowest MAE corresponds to
SIC-LSDA �k=1�, but the errors of SIC-LSDA �k=1/2� are
more systematic: its error per electron is almost constant.

TABLE III. Errors per electron in total energies of the atoms from Li to Ar
computed with the 6-311+G�3df� basis set. All values are in hartrees.

Functional ME MAE RMSE

LSDA 0.073 0.073 0.074
SIC-LSDA �k=0� −0.033 0.033 0.037
SIC-LSDA �k=1/2� −0.014 0.014 0.014
SIC-LSDA �k=1� −0.001 0.004 0.005
SIC-LSDA �k=2� 0.014 0.015 0.018
SIC-LSDA �k=3� 0.022 0.023 0.028

PBE 0.009 0.009 0.009
SIC-PBE �k=0� 0.014 0.014 0.016
SIC-PBE �k=1/2� 0.011 0.011 0.012
SIC-PBE �k=1� 0.010 0.010 0.010
SIC-PBE �k=2� 0.008 0.008 0.008
SIC-PBE �k=3� 0.007 0.007 0.007

TPSS −0.002 0.002 0.002
SIC-TPSS �k=0� 0.021 0.021 0.025
SIC-TPSS �k=1/2� 0.014 0.014 0.016
SIC-TPSS �k=1� 0.010 0.010 0.012
SIC-TPSS �k=2� 0.005 0.006 0.006
SIC-TPSS �k=3� 0.003 0.003 0.004

PBEh 0.008 0.008 0.008
SIC-PBEh �k=0� 0.013 0.013 0.014
SIC-PBEh �k=1/2� 0.011 0.011 0.012
SIC-PBEh �k=1� 0.009 0.009 0.009
SIC-PBEh �k=2� 0.007 0.007 0.008
SIC-PBEh �k=3� 0.007 0.007 0.007
However, these particularly good atomic energies do not lead
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to the best atomization energies, as we show in the next
section.

C. Atomization energies

A benchmark set of molecular atomization energies or
enthalpies of formation is one of the standard tests habitually
applied to a newly developed density functional. To assess
the thermochemical performance of the new SIC scheme, we
computed atomization energies for the AE6 set developed by
Lynch and Truhlar.26 This set includes only six molecules
�SiH4, S2, SiO, C3H4 �propyne�, C2H2O2 �glyoxal�, and
C4H8 �cyclobutane��, but it is quite diverse and was con-
structed to be representative, that is, to reproduce errors in
much larger sets. We used QCISD/MG3 molecular geom-
etries suggested by the authors of the set.26,27 The deviations
of the theoretical methods from the best estimates of atomi-
zation energies are summarized in Table IV. The deviations
for individual molecules can be found in Ref. 25.

Note that an error in an atomization energy is equal to
the negative of the error in the enthalpy of formation for the
same molecule. Thus, MEs reported in Table IV for the
PZ-SIC �k=0� have opposite signs to the ones reported in
Ref. 9 for enthalpies of formation.

As compared to the Perdew-Zunger SIC �k=0�, the cor-
rections with k	0 provide much better thermochemical per-
formance. The improvement is particularly noticeable in the

TABLE IV. Errors in atomization energies for the AE6 test set set computed
with the 6-311+G�3df ,2p� basis set. All values are in kcal/mol.

Functional ME MAE RMSE

LSDA 77.3 77.3 92.2
SIC-LSDA �k=0� 57.7 60.3 79.4
SIC-LSDA �k=1/2� 31.3 34.0 42.9
SIC-LSDA �k=1� 18.6 21.0 25.1
SIC-LSDA �k=2� 6.7 8.6 10.0
SIC-LSDA �k=3� 0.8 7.2 8.7

PBE 12.4 15.5 17.8
SIC-PBE �k=0� −13.6 17.0 21.7
SIC-PBE �k=1/2� 0.7 8.6 12.4
SIC-PBE �k=1� 7.8 12.6 14.7
SIC-PBE �k=2� 13.5 16.0 19.3
SIC-PBE �k=3� 14.8 17.2 20.6

TPSS 4.1 5.9 6.6
SIC-TPSS �k=0� −28.8 34.7 39.2
SIC-TPSS �k=1/2� −8.6 15.0 17.5
SIC-TPSS �k=1� 1.3 9.9 10.6
SIC-TPSS �k=2� 9.4 11.3 12.4
SIC-TPSS �k=3� 11.9 12.4 14.1

PBEh 0.6 6.2 6.6
SIC-PBEh �k=0� −19.2 19.8 25.6
SIC-PBEh �k=1/2� −6.1 10.7 13.8
SIC-PBEh �k=1� 0.2 8.1 11.2
SIC-PBEh �k=2� 5.1 10.3 11.9
SIC-PBEh �k=3� 6.3 10.9 12.1
case of LSDA. The optimal value of the parameter k happens
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to be around 1/2 for PBE. TPSS and PBEh seem to require
k=1, whereas LSDA needs higher values of k, such as k=2
or k=3.

The strong LSDA overbinding of molecules �Table IV�
arises largely because the self-interaction error of LSDA
raises the energies of the separated atoms more than it raises
the energy of the molecule. Reducing this error in the atoms
�as in Table III, or in the more empirical approach of Ref. 28�
strongly reduces the LSDA error of the atomization energy
of the molecule. However, as mentioned in the previous sec-
tion, the best total energies for the atoms arise when k
1,
while the best SIC atomization energies arise when k
2 or
3.

D. Barrier heights of chemical reactions

Barrier heights of chemical reactions are seriously un-
derestimated by semilocal functionals. In fact, barrier heights
are often predicted to be negative, erroneously suggesting
that the transition state is more stable than either reactants or
products. Self-interaction error is often taken to be respon-
sible for this fault. Hybrid functionals specifically designed
for thermochemical kinetics usually contain a large fraction
of exact exchange,29,30 which reduces the SIE. Although the
Perdew-Zunger SIC does improve barrier heights,6 it cannot
compete with specialized hybrids.

To assess the performance of the new SIC, we computed
barrier heights for the BH6 benchmark set,26which consists
of the forward and reverse barriers for three reactions: OH
+CH4→CH3+H2O, H+OH→H2+O, and H+H2S→H2

+HS. Like the AE6 set, this small data set was optimized to
be representative. Geometries of all species as well as the
best estimates of barrier heights were taken from Refs. 26
and 27. The summary of deviations is given in Table V and
the detailed tables can be found in Ref. 25.

Table V shows that the scaled-down SIC performs better
than the PZ-SIC, if k=1/2 or k=1 is chosen. For all self-
interaction corrected methods, the largest error corresponds
to the reverse barrier of the first reaction. That is not surpris-
ing since this reaction has the CH3 radical as one of the
products. We used the planar geometry for CH3, optimized in
a high-level quantum chemistry method. However PZ-SIC
erroneously predicts CH3 to be pyramidal.7 Scaling the SIC
down alleviates but does not completely solve this problem.
The SIC also produces an unwanted large correction to the
reaction energy of the first reaction. Besides the aforemen-
tioned inconsistency in the CH3 geometry, another contribu-
tion to this problem appears to come from the difference in
shapes of localized orbitals between OH and H2O, resulting
in considerably different magnitudes of ESIC for the reactants
and products.

E. Ionization potentials and electron affinities

We have recently tested10 the Perdew-Zunger SIC for
atomic and molecular IPs and EAs. For IPs and EAs evalu-
ated as differences in total energies �the �SCF method�, we
found that PZ-SIC provides a little improvement for LSDA,
whereas the performance of beyond-LSDA functionals is de-

teriorated by the PZ-SIC.
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We have tested the performance of the scaled-down SIC
for IPs and EAs of atoms up to argon. The deviations of
theoretical predictions from the experimental data31 are sum-
marized in Table VI and given in detail in Ref. 25.

We can clearly see that SIC with k	0 performs better
than the Perdew-Zunger SIC �k=0� in all cases. The optimal
values of k for IPs and EAs seem to be around k=2, . . . ,3,
which is often higher than the optimal values for atomization
energies or barrier heights. The EA of the boron atom is
negative in Perdew-Zunger-corrected PBE, TPSS, and PBEh.
But it becomes correctly positive if k�1.

F. Bond lengths

We compiled a benchmark set of 11 small molecules for
which the equilibrium bond lengths are known from
experiment.31 The set comprises the following species: LiH,
BeH, BH, CH4, C2�1�g

+�, CO, N2, OH, O2, HF, and F2. We
optimized geometries of all the molecules in the set using
self-interaction corrected and uncorrected functionals. Since
analytic gradients with respect to nuclear displacements are
not available in our SIC implementation, all the geometry
optimizations with SIC functionals were done by means of
bond length variation followed by quadratic interpolation.
Table VII summarizes the deviations of equilibrium bond
lengths from experiment, and the detailed errors are available
in Ref. 25.

In agreement with previous observations,5,11 we found
that the PZ-SIC predicts too short bonds in molecules. The

TABLE V. Errors in barrier heights for the BH6 test set computed with the
6-311+G�3df ,2p� basis set. All values are in kcal/mol.

Functional ME MAE RMSE

LSDA −17.9 17.9 18.8
SIC-LSDA �k=0� −5.2 5.2 6.6
SIC-LSDA �k=1/2� −3.8 3.8 5.0
SIC-LSDA �k=1� −3.2 3.5 4.7
SIC-LSDA �k=2� −2.8 4.7 5.4
SIC-LSDA �k=3� −2.9 5.7 6.3

PBE −9.5 9.5 10.0
SIC-PBE �k=0� −0.1 4.2 5.4
SIC-PBE �k=1/2� −2.5 2.9 4.9
SIC-PBE �k=1� −4.2 4.3 5.8
SIC-PBE �k=2� −6.5 6.5 7.7
SIC-PBE �k=3� −7.7 7.7 8.9

TPSS −8.5 8.5 8.8
SIC-TPSS �k=0� −0.2 5.7 6.5
SIC-TPSS �k=1/2� −2.8 4.4 5.5
SIC-TPSS �k=1� −4.6 5.0 6.0
SIC-TPSS �k=2� −6.8 6.8 7.6
SIC-TPSS �k=3� −7.9 7.9 8.5

PBEh −4.8 4.8 5.0
SIC-PBEh �k=0� 1.3 4.1 4.8
SIC-PBEh �k=1/2� −0.6 2.9 3.6
SIC-PBEh �k=1� −2.0 2.4 3.7
SIC-PBEh �k=2� −3.6 3.7 4.7
SIC-PBEh �k=3� −4.5 4.5 5.3
C2 molecule is a notable exception since the C2 bond is too
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long in all SIC methods.25 C2 has several low-lying spin
states and thus is very problematic for single-reference meth-
ods, which often put the states in a wrong order.32 In all our
calculations, we treated C2 as a closed shell singlet, since
that is the experimental ground state. For all the molecules in
the set, increasing the value of k of the SIC brings the bond
lengths into a much better agreement with experiment. The
SIC with k=2 is particularly successful.

TABLE VI. Deviations from experiment of �SCF ionization potentials and
electron affinities for atoms from H to Ar computed with the 6-311+
+G�d� basis set. All values are in eV.

Functional

18 IPs 12 EAs

ME MAE ME MAE

LSDA 0.17 0.30 0.29 0.29
SIC-LSDA �k=0� 0.21 0.24 −0.15 0.18
SIC-LSDA �k=1� 0.07 0.15 −0.08 0.11
SIC-LSDA �k=2� 0.00 0.13 −0.05 0.09
SIC-LSDA �k=3� −0.04 0.14 −0.03 0.10

PBE 0.10 0.15 0.09 0.13
SIC-PBE �k=0� −0.34 0.39 −0.57 0.57
SIC-PBE �k=1� −0.14 0.22 −0.29 0.29
SIC-PBE �k=2� −0.06 0.15 −0.15 0.15
SIC-PBE �k=3� −0.01 0.12 −0.07 0.10

TPSS 0.08 0.12 0.03 0.05
SIC-TPSS �k=0� −0.28 0.34 −0.45 0.47
SIC-TPSS �k=1� −0.08 0.17 −0.22 0.24
SIC-TPSS �k=2� 0.00 0.12 −0.10 0.12
SIC-TPSS �k=3� 0.05 0.11 −0.03 0.08

PBEh 0.06 0.12 −0.02 0.09
SIC-PBEh �k=0� −0.30 0.33 −0.53 0.53
SIC-PBEh �k=1� −0.14 0.19 −0.31 0.31
SIC-PBEh �k=2� −0.07 0.14 −0.20 0.20
SIC-PBEh �k=3� −0.03 0.12 −0.13 0.15

TABLE VII. Deviations from experiment of equilibrium bond lengths for 11
molecules computed with the 6-311+G�3df ,2p� basis set. All values are in
Å.

Functional ME MAE RMSE

LSDA 0.005 0.012 0.015
SIC-LSDA �k=0� −0.035 0.048 0.055
SIC-LSDA �k=1� −0.010 0.018 0.024
SIC-LSDA �k=2� −0.001 0.009 0.013

PBE 0.010 0.010 0.011
SIC-PBE �k=0� −0.012 0.032 0.046
SIC-PBE �k=1� −0.009 0.014 0.022
SIC-PBE �k=2� −0.004 0.008 0.013

TPSS 0.007 0.007 0.008
SIC-TPSS �k=0� −0.004 0.026 0.043
SIC-TPSS �k=1� −0.006 0.012 0.020
SIC-TPSS �k=2� −0.004 0.008 0.012

PBEh −0.004 0.008 0.013
SIC-PBEh �k=0� −0.015 0.034 0.048
SIC-PBEh �k=1� −0.011 0.024 0.034
SIC-PBEh �k=2� −0.012 0.015 0.022
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V. DISCUSSION

A. Effect of orbital densities on the functional
dependence of the SIC results

In our previous studies we found that the Perdew-Zunger
SIC works better for LSDA than for other functionals.9,10

This conclusion seems to hold for the scaled-down correc-
tion as well: remarkable improvements are observed for
LSDA, whereas the performance of the SIC is less satisfac-
tory for beyond-LSDA functionals.

This observation may be explained as a result of using
orbital densities in Eq. �11�. Orbital densities often have
nodes and minute details, such as the so-called “orthogonal-
ization tails.” Thus orbital densities can be much more rap-
idly varying than normal ground-state densities. Our correc-
tions involve evaluation of the xc energy for an orbital
density. LSDA has a limited sensitivity to density variations.
Functionals dependent explicitly on the density derivatives
�GGA and meta-GGA� are more sensitive to density varia-
tions. The reduced gradient 
���� /�4/3 and the reduced La-
placian 
�2� /�5/3 diverge at the nodes. Thus, corrections
utilizing orbital densities are better suited for LSDA than for
higher-level functionals.

The above argument also explains why spherical averag-
ing of orbital densities improves atomic IPs and EAs in the
case of SIC-PBE, but not in the case of SIC-LSDA.10 Spheri-
cal averaging of atomic orbitals removes angular nodes.

In Eq. �4� or �11�, Exc
DFA��i� ,0� is the ground-state

exchange-correlation energy for an orbital density �i��r�
= ��i��r��2. In many cases, �i��r� is found from an orbital
�i��r� that changes sign or phase and so is not a ground-state
wave function. The corresponding ground-state orbital would
be ��i��r��, which belongs to a highly singular and rapidly
varying external potential 1

2�2��i��r�� / ��i��r��+constant,
even when �i��r� belongs to a smooth external potential
1
2�2�i��r� /�i��r�+constant. We may expect semilocal ap-
proximations to be significantly less accurate for Exc��i� ,0�
than for Exc��� ,���, which may cause some accuracy loss in
orbital-density-dependent corrections such as Eq. �4� or �11�.

B. Formal properties and exact constraints
on the parameter k

As stated earlier, Eq. �11� with k�0 is exact for any
one-electron density and gives no correction to the exact
density functional. For k=0, Eq. �11� reduces to the original
Perdew-Zunger self-interaction correction,4 and for k	0 the
SIC is scaled down in many-electron regions.

The exchange term of Eq. �11� has the proper uniform
density scaling33 and the proper spin scaling34 when
Exc

DFA��� ,��� does. By design, the self-interaction correction
is proportional to J��i��+Exc

DFA��i� ,0�, taking advantage of
any DFA error cancellation �as in LSDA� between Ex and Ec

and also avoiding the use of energy densities for J and Exc
DFA

that are not unique and may not be mutually consistent. If the
orbitals �i��r� are localized in regions of space where ��

W /��

does not vanish, then Eq. �11� is size consistent �separable
and extensive in the sense of Ref. 35�.

In the Perdew-Zunger SIC, there is a formal problem35
which is not widely appreciated. We do not know if the or-

Downloaded 19 Mar 2006 to 152.66.63.71. Redistribution subject to 
bitals that minimize the PZ-SIC �k=0� total energy for a
uniform density are localized or delocalized.36–38 �1� If they
are localized, then the PZ-SIC, applied to an approximate
functional that is exact for the energy of a uniform density,
produces an energy that is lower than the exact one. �2� If the
SIC orbitals for a uniform density are delocalized, then the
PZ-SIC energy of a large finite chunk of uniform density has
a “false surface energy” that is correctly proportional to the
area of its surface but incorrectly depends upon its shape.

With any k	0, the above problems are corrected, since
�W /� vanishes for a uniform density. But we still do not
know if the orbitals that minimize the SIC �k	0� energy for
an electron gas of slow or small density variation are local-
ized or delocalized. If they are delocalized, then no further
constraint on k is implied. But if they are localized, then k
must be an integer �1 to guarantee the existence of a gradi-
ent expansion for Exc

DFA. In particular, k�2 is needed to pre-
serve all the correct formal properties of LSDA and PBE
under self-interaction correction, while k�3 is needed to
preserve all the correct properties of TPSS.

Let us focus specifically upon self-interaction correction
of LSDA, for the reasons described in Sec. V A. Consider a
uniform electron gas perturbed by a density variation of
small amplitude A: ��r�=constant+Af�r�. LSDA is known to
give a rather good description of the energy variation
through order A2, and indeed the PBE GGA was
constructed20 to preserve this good LSDA behavior. If we
want our SIC to do the same even if the SIC orbitals are
localized, we must take k�2 to make ��W /��k of order A4 or
higher, since �W
����r��2
A2. In a sense, SIC-LSDA with
k=2 is not only a successful approximation, but a particu-
larly well-justified one.

Unfortunately, while increasing k above zero satisfies
some additional exact constraints, it violates others. For ex-
ample, the original Perdew-Zunger SIC �k=0� exchange-
correlation potential has the correct asymptotic behavior
−1/r, while the scaled-down SIC has a −XHO/r behavior,
where XHO is the scaling factor of Eq. �5� for the highest
occupied �HO� orbital, and XHO is less than one for k	0.
Our preliminary studies show that k=0 may be needed for
the highest occupied orbital to provide a good description of
charge transfer. Thus, we do not have here an all-purpose
self-interaction correction.

VI. CONCLUSIONS

We have introduced a modified self-interaction correc-
tion, which is scaled down in many-electron regions. Com-
pared to the original Perdew-Zunger SIC, the new SIC per-
forms much better for thermochemistry and thermochemical
kinetics and predicts equilibrium bond lengths much closer
to experiment. The scaled-down SIC has one adjustable pa-
rameter k. The optimal value of k may differ for different
properties and functionals, but its typical suggested values lie
between 1/2 and 2. SIC-LSDA with k=2 is a particularly
successful combination in terms of its performance and its

formal properties. It performs significantly better than uncor-
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rected LSDA and somewhat better than uncorrected GGA,
and at the same time has almost the status of a nonempirical
functional �as explained in Sec. V B�.

The new SIC is only marginally more expensive than the
PZ-SIC, but unfortunately it inherits all the computational
disadvantages of its predecessor. It is not invariant under a
unitary transformation of the occupied orbitals, so that the
energy minimization is nontrivial. The exchange-correlation
energy has to be evaluated at each orbital density, which is
one of the major factors that slows down the calculation.
Evaluation of SIC requires dense unpruned integration grids
since orbital densities are much more rapidly varying than
typical ground-state densities. For the same reason, orbital-
density-dependent self-interaction corrections work better for
LSDA than for higher-level functionals.

Introduction of the scaling factor of Eq. �5� leads to sat-
isfaction of some additional exact constraints. But on the
other hand, some other constraints, satisfied by the PZ-SIC,
may be lost. More constraints might be preserved in the uni-
tarily invariant SIC of Eq. �22� of Ref. 2 �or in a closer
approximation to it�, although at an even greater computa-
tional cost. The present study makes it likely that the scheme
proposed in Ref. 2 will be accurate when applied to LSDA
with k=2. �Note that k�2 is needed in this approach to
recover the good LSDA energy for a uniform gas perturbed
by a density variation of small amplitude.� At any rate, per-
haps the most important step towards an all-purpose SIC has
been made: we gained a much better understanding of the
problems that need to be solved.

We have focused here on self-interaction correction of
an existing functional. Alternatively, one can construct a
functional that is self-interaction-free from the start �e.g., a
hyper-GGA as defined in Ref. 2�. However, as we have
found here, exactness for all one-electron densities does not
guarantee a correct long-range asymptote for the exchange-
correlation potential or correct charge transfers.
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APPENDIX: ENERGY DERIVATIVES

The derivative of the total energy with respect to orbital
variations under the constraint of orbital orthonormality is

�E

��i�r�
= 2Hi�i�r� − �

j

� j�r����i�Hj�� j� + �� j�Hi��i�� ,

�A1�
where
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Hi = −
1

2
�2 + v�r� +� ��r��

�r − r��
dr� + vxc

DFA����,���,r�

− Xi
k�� �i�r��

�r − r��
dr� + vxc

DFA���i,0�,r�	
− � �W

�
	k

�J��i� + Exc
DFA��i,0��

− �
j

�Xj
k

���r�
�J�� j� + Exc

DFA�� j,0�� . �A2�

The derivatives �Xj
k /���r� in Eq. �A2� account for variations

in ��W /��k. They are evaluated using the method of Neumann
et al.,39 which is typically used for obtaining matrix elements
of xc potentials of meta-GGA functionals. The details of the
implementation of Eq. �A1� in the Gaussian basis set can be
found in Ref. 9.
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