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While the exact total energy of a separated open system varies linearly as a function of average electron
number between adjacent integers, the energy predicted by semilocal density-functional approximations is
concave up and the exact-exchange-only or Hartree-Fock energy is concave down. As a result, semilocal
density functionals fail for separated open systems of fluctuating electron number, as in stretched molecular
ions A2

+ and in solid transition-metal oxides. We develop an exact-exchange theory and an exchange-hole sum
rule that explain these failures and we propose a way to correct them via a local hybrid functional.
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Kohn-Sham density-functional theory �1,2� �DFT� re-
places the correlated wave-function problem by a more trac-
table problem of noninteracting electrons moving in self-
consistent effective potentials vs

��r� ��= ↑ , ↓ � which
generate the spin densities n��r� of the real �interacting� sys-
tem. Exact in principle for the ground-state energy and den-
sity, Kohn-Sham DFT requires in practice an approximation
for the exchange-correlation �xc� energy functional
Exc�n↑ ,n↓�. Then vxc

� �r�=�Exc/�n��r�. With improving ap-
proximations, DFT has become the standard method for elec-
tronic structure calculations in physics and chemistry.

In terms of the total electron density n=n↑+n↓ and
exchange-correlation energy per electron �xc�r�, we write

Exc =� dr n�r��xc�r� . �1�

A ladder �3� of approximations constructs �xc�r� as a function
of density-dependent ingredients. As more ingredients are
employed, they can be used to satisfy more exact constraints
on Exc and/or better fit experimental data. The first three
rungs are semilocal �with �xc found from the Kohn-Sham
orbitals in an infinitesimal neighborhood of r� and in some
versions nonempirical. The rungs are defined by the ingredi-
ents: �i� the local spin-density �LSD� approximation �1�,
which uses only n��r�; �ii� the generalized gradient approxi-
mation �GGA� in the Perdew-Burke-Ernzerhof �PBE� �4�
version, which adds the gradients �n��r�; �iii� the meta-
GGA in the Tao-Perdew-Staroverov-Scuseria �TPSS� �5� ver-
sion, which further adds the positive orbital kinetic energy
densities ���r�; �iv� functionals employing a truly nonlocal
ingredient, the exact �ex� exchange energy density n�x

ex, ei-
ther in full �3,6� or in part �7,8�. The currently used fourth-
rung functionals are global hybrids �gh� �9�, mixtures of ex-
act exchange and semilocal �sl� approximations

Exc
gh = aEx

ex + �1 − a�Ex
sl + Ec

sl, �2�

where the exact-exchange mixing coefficient a is a global
empirical parameter �typically a�0.2�. A global hybrid with

0�a�1 does not satisfy any universal constraints beyond
those satisfied by Exc

sl .
In many real systems, these existing functionals are rea-

sonably accurate for Ex and more accurate �due to error can-
cellation� for Exc, with accuracy generally increasing up the
ladder. Yet serious errors occur in nearly separated open sys-
tems with fluctuating electron numbers that may not average
to integer values, as summarized below. �a� In the dissocia-
tion of heteronuclear diatomics such as NaCl with bond
length R, spurious fractional-charge R→� limits are com-
mon �e.g., Na0.4+

¯Cl0.4− instead of Na0
¯Cl0�, as are re-

lated charge-transfer errors. �In this example, Na¯Cl is a
closed system of fixed integer electron number, while Na and
Cl are separated open subsystems free to exchange electrons
with each other.� �b� In the dissociation of molecular radical
cations A2

+, the R→� limit is correctly A0.5+
¯A0.5+, but

the total energy is far below that of A¯A+, with which it
should be degenerate. For the one-electron molecule H2

+,
this is unambiguously �10� a self-interaction error. The errors
�a� and �b� are not necessarily corrected by functionals that
are exact for all one-electron densities �11�. �c� In the solid
state, energy competition among electronic configurations in
transition-metal oxides, lanthanides, and actinides can be
poorly described �12�. These errors are similar in LSD, PBE,
and TPSS, but are improved by global hybrids �12�. In this
paper, we derive the generalized exchange-hole sum rule and
then explain at the most fundamental level why semilocal
functionals fail for open systems by showing that they vio-
late this rule. We also show that the errors of semilocal func-
tionals for Exc can be corrected by a properly designed local
hybrid functional.

For closed systems of integer electron number and integer
occupation numbers, the exact �Hartree-Fock-type� exchange
energy per electron at r is given by

�x
ex�r� =

1

2
� dr�

nx�r,r��
�r − r��

, �3�

where nx�r ,r�� is the density at r� of the exchange hole
around an electron at r,
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nx�r,r�� = − �
�

����r,r���2

n�r�
, �4�

in which

���r,r�� = �
	

f	�
	��r�
	�
* �r�� �5�

is the one-particle density matrix for spin � of the Kohn-
Sham system, 
	� are orbitals and f	� their occupation num-
bers �f	�=1 or 0 for orbital energies below or above the
Fermi level, respectively�. The density for spin � is n��r�
=���r ,r�.

A little-known aspect of the work of Perdew and Zunger
�13� is their guess that Eqs. �3�–�5� apply, with fractional
occupations 0� f	��1, even to an open subsystem �with
average electron number N=�	�f	�� of a closed system. We
confirm this guess numerically now and analytically later.
Numerically, we find �14� that the total Hartree-Fock energy
computed self-consistently by Eqs. �3�–�5� for a molecule
A2

+ at R→� is exactly 2 times that of A0.5+. �The difference
between Hartree-Fock and exact exchange-only DFT ener-
gies is unimportant on the scale of the effects we study.�

Consider the total energy of an F atom, treated as an open
system, as a function of average electron number N. We vary
N by changing the population of the highest partly occupied
2p orbital and compute the energy self-consistently using the
GAUSSIAN program �15�. Figure 1 shows that the total energy
with exact exchange-correlation varies linearly between ad-
jacent integers �16,17�, but the PBEx �PBE exchange� and
PBExc �PBE exchange-correlation� energies are concave up
strongly, while the HF energy is concave down. Note also the
accuracy of PBExc energy differences for integer values of N
around 9 and their inaccuracy for noninteger values. LSD
�17�, TPSS �14�, and other functionals �18� behave similarly.

In Fig. 1, the Hartree-Fock approximation �exact ex-
change without correlation� shows substantial midpoint error
for noninteger electron numbers. However, this error is posi-

tive and thus not very harmful since energy minimization
forces integer electron numbers onto separated open sub-
systems, e.g., a symmetry-broken F¯F+ as the dissociation
limit of F2

+. But F0.5+
¯F0.5+ is a harmfully too-deep mini-

mum for the semilocal density functionals, since their mid-
point error is negative.

The failure of semilocal exchange can occur even in open
systems with integer average electron number. In semilocal
DFT, the correct dissociation limit for neutral homonuclear
diatomics built up from open-shell atoms �e.g., H2� is
achieved by spin symmetry breaking. If, however, spin sym-
metry is imposed, then the semilocal exchange energy in the
R→� limit is much more negative than the exact exchange
energy �19�. Typically, the separated atoms have half-integer
numbers of electrons of each spin �e.g., N↑=N↓= 1

2 on each
spin-unpolarized H atom�. But the C2 molecule in the singlet
configuration KK��g2s�2��u2s�2��u2px�2��u2py�2 dissociates
to two neutral C atoms, each with N↑=N↓=3 but fractional
occupations f2px↑= f2px↓= f2py↑= f2py↓= 1

2 . Figure 2 shows that,
again, the spin-restricted semilocal exchange energy in the
R→� limit is far more negative than that of spin-restricted
Hartree-Fock theory.

In a transition-state complex of a chemical reaction, re-
sidual fluctuation of electrons among its weakly bonded frag-
ments raises the total energy via increased Coulomb repul-
sion, but semilocal exchange approximations miss this effect
and predict reaction barriers that are too low.

When we apply single-configuration Hartree-Fock theory
to a closed system, fractional occupation numbers on a sepa-
rated open subsystem can only represent fluctuation of elec-
trons among separated subsystems. That is the case we ad-
dress here. In a different case, fractional occupation on a
closed system can represent fluctuation of electrons among
degenerate orbitals of that system.

We will now prove that Eqs. �3�–�5� apply to an open
system of fluctuating electron number and then show how
they imply the behavior found in Figs. 1 and 2. Let S be a
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FIG. 1. Total energies of the F atom as functions of the average
electron number N in the PBE approximation �with and without
correlation� and in Hartree-Fock theory. The dotted lines represent
the exact-xc result based on the experimental ionization potential
and electron affinity of the F atom �16�.
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FIG. 2. Spin-restricted exchange-only dissociation curves for
the C2 molecule in the unusual symmetric singlet electron configu-
ration. This configuration is the lowest-energy state in the PBEx
approximation near the equilibrium internuclear distance but not at
larger R, and not at any R in Hartree-Fock.
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fully separated open system and R its infinitely distant reser-
voir. Consider now the closed system S+R of integer
electron number, which we will describe by a single
Slater determinant. Typically no more than one orbital
of S can be fractionally occupied, say, the orbital 
S�r�. From
the pair of normalized molecular orbitals 
S�r� and 
R�r�,
where 
R�r� is the orbital of R most strongly mixed with

S�r� at large finite separation, we may form a pair of mo-
lecular orbitals for S+R: 
+�r�=c
S�r�+d
R�r� and 
−�r�
=−d
S�r�+c
R�r�, where c and d are real with c2�1 and
c2+d2=1. In the absence of degeneracy between 
S�r� and

R�r�, c will be 1. Now the pure-S contribution of 
+�r� and

−�r� to the noninteracting density matrix �5� of S+R is
fS
S�r�
S

*�r��, where fS is c2 when only 
+�r� is occupied or
c2+d2=1 when both 
+�r� and 
−�r� are occupied. In Ex

ex of
S+R, cross terms between S and R vanish, because when r
is in S and r� in R �or vice versa� the Coulomb interaction
�r−r��−1 vanishes. Thus the exact exchange energy of S+R
becomes a sum of two terms �for S alone and R alone�, each
of which has the form of Eqs. �1� and �3�–�5� with possible
fractional occupation at the Fermi level.

Fractional occupation can also be thought of in the lan-
guage of ensembles. If the wave function of S+R were fully
correlated, the ensemble describing S would also be fully
correlated �17�, but since the former is only a single Slater
determinant the latter consists of Slater determinants and
their probabilities that need not be energy minimized. Now
we can use the ensemble describing S to explain why the
Hartree-Fock energy as a function of N is concave down. Let
Ei

HF�S ;S+R� be the Hartree-Fock energy of the Ni-electron
pure state i of system S, evaluated from orbitals for S formed
by truncating and renormalizing the ground-state molecular
orbitals of S+R, and let pi be the probability to find state i in
the ground state of S+R, with �ipi=1 and �ipiNi=N. Then
EHF�S ;S+R�=�ipiEi

HF�S ;S+R���ipiEi
HF�S ;S�. A familiar

and instructive example �20� is the H atom in a spin-
restricted stretched H2 molecule, where the states i are the
neutral atoms of each spin �pi=0.25, Ni=1�, cation
�pi=0.25, Ni=0�, and anion �pi=0.25, Ni=2�. Another ex-
ample �21� is Fig. 1, where the states i are those for Ni=J
and J−1 electrons, with J an integer.

The reason why semilocal functionals predict too-
negative energies for systems with fractional occupations
also becomes clear. By the orthonormality of the orbitals,
Eqs. �4� and �5� imply �for any closed or fully separated open
system� the sum rule

� dr�nx�r,r�� = − �
�

�
	

f	�n	��r�
n�r�

, �6�

where n	��r�= f	��
	��r��2. Equation �6� for noninteger f	�

was presented without proof in Ref. �13�. Adding and sub-
tracting −1=−�	�n	��r� /n�r� to Eq. �6�, we find

� dr�nx�r,r�� = − 1 + �
	�

f	��1 − f	��
�
	��r��2

n�r�
. �7�

The close similarity between the integral of nx�r ,r�� in Eq.
�7� and the integral of Eq. �3� for integer f	� was pointed out

by Gunnarsson and Lundqvist �22�, and this similarity per-
sists for noninteger values of f	�. When all the occupation
numbers are 1 or 0, the right-hand side of Eq. �7� becomes
−1, which is also the sum rule implicitly assumed by LSD,
PBE, and TPSS �23�. But, when some occupation numbers
are between 1 and 0, the right-hand side of Eq. �7� falls
between −1 and 0, meaning that part of the exact exchange
hole around an electron in an open system is located in its
distant reservoir. In this case a semilocal exchange approxi-
mation �x

sl will tend to be more negative than the exact ex-
change energy per electron �x

ex�r�, as shown in Figs. 1 and 2.
A sum rule for the exact xc-hole density nxc�r ,r�� is also

known �17�. Its integral equals −1 only when the electron
number does not fluctuate and otherwise falls between −1
and 0. Ref. �17� presents a coupling-constant integration for
Exc and nxc. But the integrand for Exc at zero coupling
strength is not really the exact exchange-only energy because
of an exact-degeneracy static correlation. When the electron
number on the infinitely separated open system S fluctuates
at the Hartree-Fock level, occupied and unoccupied orbitals
�with the same spin� of closed system S+R are degenerate.
Degenerate perturbation theory is needed to find the correla-
tion energy, which is of the same order as the exchange en-
ergy even in the weak-coupling or high-density limits. Exact-
degeneracy correlation and normal correlation shift the
concave-down Hartree-Fock energy of Fig. 1 into the
straight-line correlated exact energy. Note also from Fig. 1
that semilocal approximations for Exc overestimate the
strength of exact-degeneracy correlation �which they intro-
duce via Ex

sl�.
Semilocal functionals are often combined with a Hubbard

U parameter �DFT+U�. A simple case occurs when only one
localized orbital has noninteger occupation f , and the method
adds to the semilocal energy a positive term Uf�1− f�. Here
f�1− f� is the Hartree-Fock mean square fluctuation of elec-
tron number in this orbital. The close connection between
DFT+U and self-interaction correction has been argued �24�.
We note that U does not represent “strong correlation” �as
sometimes asserted�, because the U needed to reach the
Hartree-Fock energy is greater than that needed to reach the
exact correlated energy. U favors the less fluctuating con-
figuration by penalizing the more fluctuating one.

Our Fig. 1 and our analysis explaining it show that some
region-dependent fraction of exact exchange is needed to
correct semilocal exchange-correlation approximations. Such
a mixing of the concave-down exact exchange with the
concave-up semilocal exchange and semilocal correlation
can produce the needed straight line. This motivates a local
hybrid �lh� functional

�xc
lh �r� = �x

ex + �1 − a�r����x
sl − �x

ex� + �c
sl, �8�

where 0�a�r��1 and sl=TPSS. Equation �8� was presented
in Ref. �25� without a form for a�r�. Forms were proposed in
Ref. �3� and in Ref. �7� �where the term “local hybrid” was
coined�, but did not achieve useful accuracy for equilibrium
properties �7�. The choice a�r�=1 satisfies nearly all univer-
sal constraints but misses the delicate and helpful error can-
cellation between semilocal exchange and semilocal correla-
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tion that typically occurs �because the xc-hole is deeper and
more short-ranged than the x-hole� in normal regions,
i.e., regions of space where the density is not too high,
too strongly varying, too one-electron-like, or too fluctuating
in a spin-polarized region at the Hartree-Fock level
�i.e., �x

ex/�x
sl1�. So we will take a�r� to be small or 0 in a

normal region, and to tend toward 1 to the extent that any
condition of normality is violated. Then the second and third
terms on the right-hand side of Eq. �8� represent �19� near-
degeneracy static and dynamic correlation, respectively. The
dominance of exact exchange �a�r�→1� in the high-density
limit means that Eq. �8� has 100% exact exchange plus fully
nonlocal correlation.

A natural generalization of the global hybrid of Eq. �2�,
Eq. �8� can satisfy �3,26� many more exact constraints while
achieving greater accuracy. We have developed and are test-
ing �26� such a local hybrid hyper-GGA, and the results will
be reported later. One or more universal empirical param-
eters are needed, as in Eq. �2�, since the universal constraints
are already satisfied by a�r�=1. As usual, symmetry must be
allowed to break. Spin-symmetry breaking �27�, like real cor-
relation, lowers the energy by suppressing Hartree-Fock-
level fluctuation of electron number. Semilocal functionals
mimic this suppression. Where real correlation cannot fully

suppress fluctuation, as in open systems of noninteger aver-
age electron number, semilocal functionals overcorrelate and
need a large positive correction, i.e., a large a�r�.

The Perdew-Zunger self-interaction correction �13� to
semilocal functionals works in much the same way to raise
the energy of a system with fractional occupation �11�, sat-
isfying the sum rule of Eq. �7�. However, it loses the error
cancellation between semilocal exchange and semilocal cor-
relation in normal regions, and so is inaccurate for molecules
near equilibrium geometries �28�.

In summary, striking and diverse failures of semilocal
functionals arise because they assign too low an energy to
configurations where the electron number in a spin-polarized
region fluctuates too strongly �i.e., where �x

ex/�x
sl1� at the

Hartree-Fock level. These errors should be corrected by local
mixing of an r-dependent fraction of exact exchange.
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