PHYSICAL REVIEW A 76, 042506 (2007)

One-parameter optimization of a nonempirical meta-generalized-gradient-approximation

for the exchange-correlation energy

John P. Perdew,l Adrienn Ruzsinszky,] Jianmin Tao,2 Gabor 1. Csonka,3 and Gustavo E. Scuseria®
lDepartment of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118, USA
2Department of Physics, University of Missouri—-Columbia, Columbia, Missouri 65211, USA

3Departmemf of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1521 Budapest, Hungary

4Deparlment of Chemistry, Rice University, Houston, Texas 77005, USA
(Received 1 June 2007; published 9 October 2007)

The meta-generalized-gradient-approximation (meta-GGA) for the exchange-correlation energy, as con-
structed by Tao, Perdew, Staroverov, and Scuseria (TPSS) [Phys. Rev. Lett. 91, 146401 (2003)], has achieved
usefully consistent accuracy for diverse systems and is the most reliable nonempirical density functional (and
the most reliable nonhybrid) in common use. We present here an optimized version of this TPSS functional
obtained by empirically fitting a single free parameter that controls the approach of the exchange enhancement
factor to its rapidly-varying-density limit, while preserving all the exact constraints that the original TPSS
functional satisfies. We find that molecular atomization energies are significantly improved with the optimized
version and are even better than those obtained with the best hybrid functionals employing a fraction of exact
exchange (e.g., the TPSS hybrid), while energy barrier heights are slightly improved; jellium surface energies
remain accurate and almost unchanged. The one-parameter freedom of the TPSS functional may be useful even
beyond the meta-GGA level, since the TPSS approximation is a natural starting point for the higher-level

hyper-GGA.
DOI: 10.1103/PhysRevA.76.042506
I. INTRODUCTION

Kohn-Sham density functional theory [1] is a standard
modern electronic structure theory. In this theory the
exchange-correlation (xc) part of the energy, which includes
all unknown many-body effects, must be approximated as a
functional of the electron density n(r). Although the exact
form of the universal functional remains unknown, many ex-
act properties of the functional have been discovered. Non-
empirical functionals are developed from first principles by
incorporating known exact constraints without fitting to data.
The commonly used xc functionals can be assigned to the
rungs of a ladder [2]. Higher rungs employ more local ingre-
dients (which can be used to satisfy more exact constraints)
and achieve higher accuracy. The first three rungs are semilo-
cal and thus computationally efficient in selfconsistent-field
calculations: the local spin density approximation (LSDA)
[1], which only uses the local density as an ingredient, the
generalized gradient approximation (GGA) [3], which em-
ploys not only the density but also the density gradient, and
the meta-GGA [4—7], which further makes use of the Kohn-
Sham orbital kinetic energy density. While the chosen GGA
ingredients were originally motivated by the second-order
gradient approximation, the meta-GGA ingredients were
motivated by the fourth-order gradient expansion [8] of the
exchange energy and the expansion of the exchange hole
for small interelectronic distance [9]. Exact constraints on
E,[n] satisfied by the LSDA or by the nonempirical GGA
[3] and meta-GGA [7] include the uniform-density limit,
various scaling relations [10,11], and the Lieb-Oxford
[12,13] bound.

A meta-GGA functional can be written as

Exc[”T’"¢]=Jd3’””ch(”T,”L’V”T’V"wTT’Ti)’ (1)
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where n=n;+n| and 7, is the Kohn-Sham kinetic energy
density of o-spin electrons defined by

1
7,(r) = 52 [V (r)[. (2)

L

The ¢;, are the occupied Kohn-Sham orbitals.

Starting from the Perdew-Burke-Ernzerhof (PBE) GGA
[3], Tao, Perdew, Scuseria, and Staroverov (TPSS) [7] have
constructed a meta-GGA which satisfies all of the exact or
nearly exact constraints satisfied by the PBE GGA, while
adding more. The most important added constraints are as
follows.

(i) The exchange part of the TPSS meta-GGA recovers the
full fourth-order gradient expansion [8] in the limit of slowly
varying density n(r), and is exact for the hydrogen atom. It is
designed so that its exchange potential SE,/dn,(r) remains
finite [14] at the nucleus of an atom, where the PBE GGA
potential improperly but weakly diverges.

(ii) Like the meta-GGA correlation energy of Perdew,
Kurth, Zupan, and Blaha (PKZB) [6], the correlation part of
the TPSS meta-GGA properly vanishes for any one-electron
density.

(iii) The PBE-GGA exchange-correlation energy is prop-
erly almost independent of the relative spin polarization ¢
=(ny—=n))/n in the low-density limit. This good feature is
lost in the earlier PKZB but restored in the TPSS functional.

Because the parameters introduced are fixed by exact con-
straints and not by fitting to experiment, nonempirical func-
tionals are more transferable and accurate for diverse sys-
tems [15-22] than are empirical ones. High transferrability
demands respect for two paradigms, one for condensed mat-
ter physics and another for quantum chemistry, because a
general-purpose density functional should work for solids
and solid surfaces as well as for atoms and molecules. The
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FIG. 1. (a), (b) TPSS and modified TPSS exchange enhance-
ment factors F, of Eq. (6) as functions of the reduced gradient s for
various values of a. @=0 is the iso-orbital (one- or two-electron)
limit, while @=1 approaches the slowly varying limit as s — 0.

paradigm for condensed matter physics is embodied by the
slowly varying limit, and the one for quantum chemistry by
the one- or two-electron density. Both are respected in the
TPSS approximation via their respective constraints.

In the development from PBE GGA to TPSS meta-GGA,
the added constraints on the exchange energy apply only for
small reduced density gradients. Thus there is no nonempiri-
cal reason to change from the PBE large-gradient behavior,
and (unlike the case for PKZB) no such change was made.
As we will show below, this choice was in a sense a nearly
optimal one.

In the construction of the TPSS meta-GGA, several pa-
rameters were introduced and fixed by the imposed con-
straints. One of the parameters (u), however, was determined
by the requirement that in the approach to its large-gradient
(rapidly varying) limit, TPSS exchange should recover the
PBE GGA (i.e., that the TPSS meta-GGA and PBE GGA
should agree to order |Vn|™ when |Vn|— ). This require-
ment was intended to (and did) preserve the good PBE per-
formance for bond lengths and other properties of hydrogen-
bonded systems. In this paper, we relax this requirement and
optimize this parameter by a fit to molecular atomization
energies. We also confirm that this optimization essentially
does not change the accurate jellium surface energy of the
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original version of TPSS, because the surface energy is in-
sensitive to the large-gradient behavior.

II. TPSS META-GGA

Since our optimization is made only in the exchange part
of the TPSS functional, we will focus on exchange. Because
of a simple spin-scaling relationship [11], we only need to
consider the spin-unpolarized case.

We recall the exchange enhancement factor FI;BE(S) for
the PBE GGA [3], which gives the enhancement with respect
to LSDA exchange as a function of the reduced density gra-
dient s (defined below) and depends upon two parameters.
The parameter u controls the approach of FEBE to its slowly
varying or s — 0 and rapidly varying or s— o limits (1 and
1+k, respectively), while the parameter x«=0.804 sets the
large-gradient limit. (Satisfaction of the Lieb-Oxford bound
on E, for all possible densities requires k=<0.804, and k=0
recovers LSDA exchange.) To recover the good LSDA linear
response for the uniform gas, PBE chose ©=0.219 51, which
is about twice the value needed to recover the exact second-
order gradient expansion, as discussed further below.

The TPSS exchange energy has the form

E{™[n]= f d*rned™ (n)Fy "5 (p,z), (3)

where &"(n)=-3(37n)"3/4 is the exchange energy per
electron for the uniform electron gas of density n,p=s’
=|Vn|?/[4(37)*3n®?] is the square of a dimensionless den-
sity gradient, and z=mw/7 is an inhomogeneity parameter
that arises beyond the GGA. Regions of one- or two-electron
density may be recognized by the condition 7=y, where
Tw=|Vn|?/8n is the von Weizsicker [23] kinetic energy den-
sity. The parameter z falls in the range 0<z<1. z=1 for
one- and two-electron densities while z=5p/3+0(V*) —0
for slowly-varying densities, for which the kinetic energy
density has a gradient expansion.

To construct F,, TPSS introduced a variable g, which
combines p and z:

7, =(9/20) (= D/[1 + ba(a—1)]"*+2p/3, (4)
where
a= (17— 1)/ =(5p/3)(z7 = 1) =0. (5)

The parameter b=0.4 in Eq. (4) is the smallest value that
preserves F IP SS as a monotonic function of p for each a; this
choice is made for esthetic reasons, since b=0 produces
nearly the same results in molecular tests. This expression
for g;, becomes the reduced Laplacian ¢ (as defined below) in
the slowly varying limit, and —9/20+2p/3 in the iso-orbital
(a=0) limit.

TPSS chose to retain the form of the PBE enhancement
factor, but with us® replaced by a function x, i.e.,

K
e (6)

X
1+—
K

where
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The parameters ¢ and e, which depend upon wu, are fixed by
the last two constraints (i) of Sec. I. In the large-gradient
limit,

(8)

lim x — us?,
§—00
leading to agreement through order s~ with the PBE en-
hancement factor (for reasons discussed at the end of Sec. I):

1 <
=1+Kk-—5.
s’

TPSS
Fx

9)

lim

§—0

For the slowly varying limit relevant to solids, the TPSS
F, recovers the fourth-order gradient expansion [8]:

10 146 , 73 ) 6

Fo=1+ 81p+ 20257 405qp+Dp +0(V®), (10)

where ¢=V?n/[4(37%)%*3n>] is the reduced Laplacian of the

density and D=0. The coefficient of the PBE second-order

gradient term is too large, compared to the exact one 10/81.

This makes the PBE surface energy too low, while the TPSS
surface energy is about right (as discussed in Sec. III).

We will demonstrate that improved atomization energies
can be found from the TPSS functional by changing the ap-
proach to the large-gradient limit, i.e., changing the param-
eter w in Egs. (7)—=(9) from its PBE value 0.219 51. Unlike
the case for PBE, this change affects only the large-s and not
the small-s behavior of the TPSS enhancement factor, as
shown in Fig. 1.

73

III. RESULTS AND DISCUSSION

In the assessment or fitting of density functionals, great
weight is often given to their performance for test sets of
molecular atomization energies [24-28]. For a quick evalu-
ation of density functionals for thermochemistry or kinetics,
we use the AE6 and BH6 test sets of Lynch and Truhlar [24].
The AEG6 set of atomization energies includes six molecules:
SiHy, S,, Si0, C;H, (propyne), C,H,0, (glyoxal), and C,Hg
(cyclobutane). The BH6 set of barrier heights consists of the
forward and reverse barriers for three reactions: OH+CHy
—CH3+H,0, H+OH—H,+0, and H+H,S—H,+HS.
These test sets, although small, are quite diverse and were
constructed to reproduce errors in much larger sets. It is im-
portant to have such representative test sets to avoid false
conclusions about the accuracy of the functional that might
be reached from small but unrepresentative sets.

The TPSS functional is extremely accurate [16,18] for
the enthalpies of formation calculated from atomization en-
ergies of the large G3/99 thermochemical test set of Curtiss
et al. [27]. This good performance is further improved signi-

(1+ep)?

(7)

ficantly by our optimal parameter sets. In this paper we
use the procedure developed for G3X theory [28], which
uses minus the calculated atomization energies at the
Becke three-parameter Lee-Yang-Parr hybrid functional
(B3LYP)/6-31G(2df,p) equilibrium geometries, the
B3LYP/6-31G(2df,p) zero-point energies with a frequency
scale factor of 0.9854, scaled molecular thermal corrections,
and experimental atomic data. Comparison of Tables I and II
shows that the AEG test set is qualitatively representative for
the 223 enthalpies of the G3/99 test set (the COF, molecule
was Kept in the test set), but quantitative differences occur as
the improvement is considerably larger for the enthalpies of
the G3/99 test set using our modified TPSS parameters. The
origin of these differences is not the difference in the basis
sets (see below). The 223 enthalpies of formation can be
grouped into three subsets, designated as G2-1, G2-2, and
G3-3 that contain 55, 93, and 75 molecules, respectively
[29]. The G2-1 and G2-2 subsets form the G2/97 set that
contains 148 molecules. The critically evaluated experimen-
tal data of the G3/99 set make it a useful calibration tool for
density functional methods. The G3-3 subset is particularly
interesting. This subset includes larger organic molecules (up
to ten carbon atoms, like azulene) and several difficult-to-
calculate inorganic molecules (like PFs, PCls, S,Cl,; cf.
Table II). It has been observed [16] that empirical density

TABLE 1. Deviations from experiment of the AE6 [24] molecu-
lar atomization energies obtained from the modified TPSS meta-
GGA, with several different parameter sets. All calculations were
performed self-consistently with the 6-311+G(3df,2p) basis set.
The first row is the original TPSS parameter set (more precisely
0.219 51, 1.537, and 1.590 96). Shown are mean error (ME), mean
absolute error (MAE), root mean square (rms) error, and standard
deviation. All energies in kcal/mol (1 hartree=627.5 kcal/mol).
(The mean AE6 atomization energy is 517.2 kcal/mol. For com-
parison, the MAE’s of LSDA, PBE, and PBE global hybrid func-
tionals with 25% exact exchange are [31] 77.3, 15.5, and
6.2 kcal/mol, respectively.) The parameter values for minimal
MAE are boldfaced.

Atomization energy

M e c ME MAE rms Std. Dev.
0.220 1.54 159096  4.13 592 6.61 5.66
0.225 1.51 1.55384  3.65 5.55 6.35 5.69
0.230 1.48  1.51988 3.23 5.22 6.14 5.72
0.240 143 145660 2.40 4.58 5.84 5.80
0.250 1.38  1.39660 1.62 442 5.68 5.96
0.252 1.37 1.38496 1.47 443 5.66 5.99
0.260 1.33  1.33976  0.88 4.50 5.65 6.11
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TABLE II. Deviations from experiment of the G3/99 [27] standard molecular enthalpies of formation obtained from the modified TPSS
meta-GGA, with several different parameter sets. The G3/99 test set (223 molecules) consists of three subsets called G2-1 (55 small
molecules), G2-2 (93 larger molecules), and G3-3 (75 relatively large organic molecules and radicals). The geometries, thermal corrections,
and zero-point energies were obtained at the B3LYP/6-31G(2df,p) level using a frequency scale factor of 0.9854 [28,29]. All calculations
were performed self-consistently with the 6-311+ +G(3df,3pd) basis set. The first row is the original TPSS parameter set (more precisely
0.219 51, 1.537, and 1.590 96). Shown are mean error (ME), mean absolute error (MAE), root mean square (rms) error, standard deviation,
maximal positive error [Max(+)], maximal negative error [Max(-)], and the related molecules. All energies in kcal/mol. (1 hartree
=627.5 kcal/mol.) Error=theory —experiment. The mean experimental atomization energies for the G2-1, G2-2, and G3-3 sets are about 220,

670, and 1180 kcal/mol, respectively.

Standard molecular enthalpies of formation

% e c Set ME MAE rms Std. Dev. Max(+) Max(-)
0.220 1.54 1.59096 G2-1 -3.66 4.47 2.83 4.40 5.6 (Si0) -17.9 (Si,Hg)
G2-2 -6.13 6.88 5.12 5.06 16.2 (SiF,) -22.9 (CIF5)
G3-3 -5.19 5.48 3.58 3.36 7.5 (PFs) -12.8 (S,Cl,)
G3/99 -5.20 5.81 6.86 4.48 16.2 =229
0.250 1.38 1.39660 G2-1 -2.55 3.97 2.53 4.44 7.3 (Si0) -15.6 (Si,Hg)
G2-2 -2.64 4.26 3.82 5.33 21.7 (SiF,) -19.9 (CIF;)
G3-3 1.25 3.08 2.27 3.74 14.2 (PFs) -10.6 (S,Cl,)
G3/99 -1.31 3.79 5.12 4.96 21.7 -19.9
0.252 1.37 1.38496 G2-1 -2.49 3.95 2.51 4.44 7.4 (SiO) -154 (Si,Hg)
G2-2 -2.43 4.15 3.78 5.35 22.1 (SiF,) -19.6 (CIF;)
G3-3 1.64 3.29 2.39 3.80 14.6 (PFs) -10.5 (S,Cl,)
G3/99 -1.08 3.81 5.13 5.02 22.1 -19.6

functionals such as B3LYP that are calibrated and perform
well on the G2/97 test set can fail seriously on the G3-3
subset, but this is not necessarily true for the other function-
als.

Like all standard semilocal functionals, the TPSS is not
accurate for barrier heights. In comparison with PBE, the
TPSS functional greatly improves molecular atomization en-
ergies and solid surface energies [17], although it only
slightly improves barriers.

In our modified TPSS functionl, we increased the param-
eter u above 0.21951, adjusting the parameters e and ¢ to
retain the conditions for the exact exchange energy of the
ground-state hydrogen atom and dF,/ds=0 at s=0.376 for
z=1. The latter condition keeps the meta-GGA exchange po-
tential finite at the nucleus for one- and two-electron atoms.
Five different parameter sets were considered. All molecular
calculations were performed self-consistently with the devel-
opmental version of the GAUSSIAN suite of programs [30]
with the 6-311+G(3df,2dp) basis set. In Table I, we also
show the parameters (u=0.252, etc.) that minimize a para-
bolic fit to the MAE values of the AE6 atomization energies
at ©=0.240, 0.250, and 0.260. We see in Table I that an
increase of w above the original 0.219 51 leads to better
atomization energies. The best results were obtained with the
parameter set ©=0.250, e=1.38, and ¢=1.3966, which some-
what reduces the typical TPSS overbinding of molecules.
Note that the parameter set w=0.252, e=1.37, and c
=1.384 96 reduces slightly further the TPSS overbinding ten-
dency at the expense of a very slightly increased MAE (cf.
the MEs in Tables I and II). We have also tested the use of
PBE GGA orbitals [31] and the resulting energy differences
agree with fully converged and fully self-consistent ones.

Our results in Table II show that the quite good perfor-
mance of the original TPSS for the G3/99 test set and its
G3-3 subset is further improved by our new TPSS param-
eters. For the G3-3 subset the modified TPSS clearly outper-
forms even the hybrid methods, like the B3LYP, the Becke
three-parameter Perdew-Wang 1991 (B3PW91), and the
TPSSh [16] functionals with MAEs=8.44, 4.87, and
3.33 kcal/mol, respectively (cf. 3.08 kcal/mol for the modi-
fied TPSS in Table II). The typical overbinding of TPSS is
turned into a rather small G3-3 underbinding in the modified
TPSS functional. We note that the performance of the modi-
fied TPSS for the G3-3 subset is even better with the
6-311+G(3df,3dp) basis set (no diffuse functions on the H
atoms) with AE and MAE equal to 0.40 and 2.69 kcal/mol,
respectively. We have also tested the 6-311+G(3df,2p) ba-
sis set that gave very similar results (with the parameter set
n=0.250, e=1.38, and ¢=1.3966: ME=-1.29 kcal/mol,
MAE=3.81 kcal/mol for the G3/99 test set, agreeing within
0.02 kcal/mol with the values in Table II). Mixing modified
TPSS with 10% exact exchange as in Ref. [16] (global hy-
brid) deteriorates the results considerably, leading to general
underbinding (ME=2.4 kcal/mol, MAE=4.7 kcal/mol for
the G3/99 test set), and increases the computational time for
the test by about 150%. We observed that the standard
GAUSSIAN [30] integration grid size is sufficient, and the use
of the expensive ultrafine grid is not necessary in these cal-
culations. With these modifications, 25% of the computa-
tional time can be saved for the G3/99 test set with insignifi-
cant loss of precision. This observation suggests using the
more economical 6-311+G(3df,2p) basis set instead of the
expensive 6-311++G(3df,3pd) basis set for testing pur-
poses.
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TABLE III. Deviations from experiment of the BH6 barrier
heights [24] obtained from the modified TPSS functional, with sev-
eral different values of u, with e and ¢ as in Table I. All calculations
were performed self-consistently with the 6-311+G(3df,2p) basis
set. The first row is the original TPSS. All energies in kcal/mol.
(The mean BH6 barrier height is 11.8 kcal/mol. LSDA, PBE, and
PBE hybrid barrier MAE’s are [31] 17.9, 9.5, and 4.8 kcal/mol,
respectively.)

Barrier
" ME MAE rms
0.220 -8.45 8.45 8.76
0.225 -8.37 8.37 8.69
0.230 -8.30 8.30 8.63
0.240 -8.16 8.16 8.51
0.250 -8.03 8.03 8.40
0.252 -8.00 8.00 8.38
0.260 -7.90 7.90 8.29

Common semilocal density functionals underestimate the
energy barrier heights for chemical reactions [32-34]. The
source of this error is the transition-state energy, which is
generally relatively too low with semilocal functionals. The
transition state can be considered as a weakly bound system
where bonds are being broken and formed. As we can see
from Table III, our modified TPSS results for reaction barrier
heights show a small improvement over the original TPSS;
the best barriers we calculated were for the parameter set
m=0.260, e=1.33, and ¢=1.339 76. The parameter set that
optimizes the atomization energies also improves the energy
barriers, but only slightly. To reduce the remaining reaction-
barrier error of any version of the TPSS functional requires a
partial (global hybrid) or full self-interaction correction
[32-34].

For a solid, the bulk energy is the energy per unit volume,
and the surface energy is the energy per unit area needed to
cut the bulk along a plane. Calculations of surface energies
of solids within the LSDA show reasonable agreement with
experimental results. The good-quality LSDA surface ener-
gies arise from a cancellation of errors between exchange
and correlation terms. The individual errors of exchange and
correlation surface energies are reduced by the PBE and
TPSS functionals, but in PBE the summed exchange-
correlation energy is lower and less accurate than in the
LSDA, while in TPSS it is a little higher and more accurate
[35], at least for the jellium model.

In the jellium model of a bulk metal, the ionic lattice is
replaced by a uniform positive-charge background of density
n=3/(4mr}). In the jellium model of a planar surface, this
background terminates sharply at a plane. Table IV shows
the exchange-correlation jellium surface energy for four dif-
ferent r, values, obtained with different values of u. The
results of Table III confirm that the optimization of TPSS for
molecular atomization energies does not degrade the good-
quality TPSS surface energies. The change in the surface
energy is negligible for any considered value of u compared
to the likely error of the original TPSS value.

PHYSICAL REVIEW A 76, 042506 (2007)

TABLE IV. Exchange-correlation (xc) surface energies of jel-
lium for four bulk density parameters r,, from the modified TPSS
functional, with several different values of u, with e and ¢ as in
Table 1. All calculations employ LSDA orbitals defined on a nu-
merical grid. The first row is the original TPSS. All surface energies
are in erg/cm?. (1 hartree/bohr’=1.557 X 10° erg/cm?.)

Surface xc energy

Iy

" 2 3 4 6

0.220 3380 772 266 55.5
0.225 3380 772 266 55.5
0.230 3380 772 266 55.4
0.240 3380 772 265 55.3
0.250 3380 771 265 55.2
0.252 3380 771 265 55.2
0.260 3380 771 265 55.1

In Figs. 1(a) and 1(b), we have plotted the exchange en-
hancement factor of the optimized TPSS functionals (with
n=0.252, e=1.37, and ¢=1.384 96) and compared it to the
original TPSS enhancement factor for several values of « in
the physical range of 0<<s<3. We can observe from the
figure that our optimized version differs noticeably from the
original TPSS only when s> 1. That is why the TPSS surface
energies of Table IV are not changed significantly by the
optimization. The bulk properties of solids [17] should not be
significantly changed either; the large-s domain affects
mainly the atomization energies.

The change in the parameter w, from the original TPSS
0.219 51 to the optimized or modified 0.252, is not large,
suggesting that the original and nonempirical TPSS meta-
GGA is already nearly optimized. Even hydrogen bonds
[16], which are sensitive to the approach to the large-gradient
limit, should not be much changed. The parameter « in Eq.
(9) is already optimal; increasing k above 0.804 would also
reduce and improve TPSS atomization energies as it reduces
and improves PBE atomization energies [36], but would in
either case violate the Lieb-Oxford bound for some possible
densities.

In summary, we have made a one-parameter empirical
optimization of the TPSS meta-GGA, leading to a consider-
able improvement over the original TPSS in molecular at-
omization energy and a small improvement in energy barrier
height. Comparison of our G3 atomization energies with
those from 18 standard functionals in Table T of Ref. [16]
shows that our modified TPSS outperforms even the standard
hybrid functionals that mix in a fraction of exact exchange
with the help of one or more empirical parameters. We con-
firm that our optimization essentially does not change the
good TPSS surface energy, and we suspect that it will not
change the TPSS bulk properties of solids either. We con-
tinue to recommend use of the well-tested [16-22] original
TPSS functional, except for problems where more accurate
molecular atomization energies are needed; for such prob-
lems, we recommend our modified TPSS version.

Finally, we observe that the TPSS meta-GGA is a natural
input to the higher-level hyper-GGA [2,37], for which the
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one-parameter freedom proposed here may also be useful. (It
is for the sake of such possible future applications that we
have shown in Table I how the dependent parameters e and ¢
vary with the independent one w.) The added ingredient of a
hyper-GGA (local hybrid or fourth-rung functional) is the
exact exchange energy density. As we have argued elsewhere
[37], hyper-GGA’s can satisfy many more exact constraints
than meta-GGA’s, but require one or more empirical param-
eters.
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