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Semilocal density functionals such as the local-spin-density and generalized-gradient approximations are
known to overestimate the polarizabilities and especially the hyperpolarizabilities of long-chain molecules, the
latter by as much as a factor of 10 or more in model hydrogen chains. These quantities are much better
predicted by exact-exchange methods such as Hartree-Fock or optimized effective potential. We show here that
the semilocal functionals, after full or scaled-down Perdew-Zunger self-interaction correction �SIC�, are about
as good as the exact-exchange methods for these quantities. As is the case for the exact-exchange methods, SIC
is fully nonlocal and exact for all one-electron densities, and �more relevantly to the electrical response� tends
to maintain an integer number of electrons on each H2 chain unit to a greater extent than the semilocal
functionals do. In this study, the SIC energy is minimized directly, without an optimized effective potential.
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First-principles density-functional methods �1,2� play an
important role in the description of the electronic structure of
molecules, clusters, and solids. The accuracy of the density-
functional calculations relies on the approximation to the
exchange-correlation energy. Semilocal density functionals
such as the local-spin-density �LSD� approximation �2� and
the generalized-gradient approximation �GGA� �3� often pre-
dict good-quality ground-state properties near equilibrium
geometries, but predictions of the linear �4–10� and nonlin-
ear �4–6� electrical response of molecular chains, and other
problems that involve fractional numbers of electrons
�11,12�, have remained a challenge.

The overestimation of the static polarizability and hyper-
polarizability by LSD and GGA has been known for a long
time. It arises from the underestimated or wrongly signed
�4,8� counteraction �5� to an applied external field in the
semilocal exchange-correlation potentials. When a static
electric field is applied to a chain of atoms, charge transfer
occurs along the backbone of the chain. This induced polar-
ization is a nonlocal effect, requiring a nonlocal dependence
of the exchange-correlation energy on the density or orbitals.
The local and semilocal approximations fail to provide the
correct counteracting response field that reduces the electri-
cal response.

The needed nonlocal effects are properly described by
highly accurate wave-function methods �Møller-Plesset and
coupled-cluster�, and even Hartree-Fock �HF� theory without
correlation can provide a good starting point for these so-
phisticated wave-function techniques. The Hartree-Fock
method includes some nonlocal effects, and the exact nonlo-
cal exchange itself largely corrects the tremendous overesti-
mation of the nonlinear response in the semi-local ap-
proaches �Fig. 1�. The exact-exchange �EXX� or optimized
effective potential �OEP� �13–20� density-functional theory
�DFT� exhibits functional nonlocality as well, although it is
associated with a local multiplicative potential. It can pro-
vide Hartree-Fock-level results and can be chosen as an al-

ternative thereto. Approximations to the EXX or OEP for
exchange, such as the Krieger-Li-Iafrate �KLI� �21� and
common-energy-denominator-approximation �CEDA� meth-
ods �22�, yield hyperpolarizabilities that are better than those
of the semilocal functionals but less accurate than those of
the EXX method �5�.

The failure of the semilocal approaches such as LSD and
GGA for the electric response seems rooted in the self-
interaction error inherent to these approximations and largely
absent from exact-exchange methods. This was demonstrated
by calculations of the polarizability in Refs. �8,9�, and will
be demonstrated here more dramatically by calculations of
the hyperpolarizability. The one-electron self-interaction er-
ror is the error for one-electron densities, while many-
electron self-interaction error �a concept that was developed
recently� is an incorrect behavior of the energy of an open
system as a function of the average number of electrons in it
�23–25�. Both errors of semilocal functionals are corrected
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FIG. 1. �Color online� Hyperpolarizability �in 10−3 a.u.� vs
chain length n for hydrogen chains H2n. If there were no interaction
and no charge transfer between H2 chain units, then the energy,
polarizability, and hyperpolarizability would all be proportional to
the number of such units, n.
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by the method of Perdew and Zunger �26�, the former ex-
actly and the latter approximately. Self-interaction correction
�SIC� is greater to the extent that the average electron num-
ber differs from an integer. SIC tends to force an integer
number of electrons onto a separated open system �23�, and
in this way can provide a needed field counteraction that
limits the electrical response of a chain of nearly separated
units. In simpler language, SIC makes the electrons “stick
tighter” to the chain units, reducing the charge transfer that
overestimates the electrical response when semilocal func-
tionals are used. In more advanced language, SIC mimics
�11,12� the derivative discontinuity �27� of the exact
exchange-correlation energy for a separated open system,
and the residue of this derivative discontinuity for a chain
unit provides the needed field counteraction �6�. The success
of SIC for the electrical response must be a consequence of
SIC’s approximate many-electron self-interaction freedom,
and not only of its one-electron self-interaction freedom: In
an exact treatment, there is no field counteraction for a one-
electron ground state, where the “response” part of the
exchange-correlation potential vanishes, and none from ex-
change in a two-electron system �5�.

The self-interaction error was evident long ago within
LSD, and led Perdew and Zunger �PZ� �26� to propose a
self-interaction correction to LSD or other density-functional
approximations. A recently developed scaled-down version
of the PZ-SIC �28� has one-electron self-interaction freedom
like PZ-SIC, with a better description of equilibrium proper-
ties of molecules but less many-electron self-interaction free-
dom �23�. Both the PZ-SIC and its scaled-down versions are
orbital-by-orbital corrections of the SI error and have the
form

Exc
SIC���n

��� = Exc
approx��↑,�↓� − �

n�

occupied

�n��U��n
��

+ Exc
approx��n

�,0�� , �1�

where �n
�= ��n��2 ,��=�n

occup�n
�, and

�n� =	 d3r���
w/���k�n

�. �2�

Here U, the Hartree electrostatic energy, provides full non-
locality. ��

w is the Weizsäcker kinetic energy density and �� is
the positive kinetic energy density of �-spin electrons. The
scale-down factor �n� is 1 for ground states with two or
fewer electrons �where PZ-SIC is exact for exchange�
�23,24�, but lies between 0 and 1 for many-electron densities.
The scaled-down SIC has only one adjustable parameter k
that can fine-tune the scale-down factor in a many-electron
region between 0 and 1. k=0 is the original PZ-SIC, with
�n�=1 and thus with exact self-exchange for the SIC orbit-
als. For the scaled-down SIC, we chose k=1 and 2 as typical
�but not necessarily optimal� values.

The SIC energy of Eq. �1� depends on the occupied orbit-
als, and �unlike the case for Hartree-Fock theory� is not in-
variant under unitary transformation of them �26�. The ortho-
normal occupied orbitals that minimize the energy are
typically localized, and guarantee self-consistency and size

consistency �26�. We follow the method of Ref. �29�, in
which the SIC energy is minimized via a gradient search
with Löwdin orthogonalization. Other methods for solving
the SIC equations may impose additional constraints. The
canonical delocalized orbitals that are unitarily equivalent to
the SIC orbitals can be constrained to belong to a common
effective potential that is either nonlocal �30,31� or local
�8,9�. These constraints raise the energy, but typically not by
much. The advantage of a local or Kohn-Sham potential is
that it can be plotted to show the field-counteracting term �8�.
But a disadvantage is that the complicated full OEP
�6,7,14–20,9� formalism should ideally be employed, since
the simpler KLI and CEDA formalisms do not achieve full
self-consistency �at least for the hyperpolarizabilities in
exact-exchange approximations�. We have learned of recent
KLI- �8� and OEP- �9� SIC calculations for the polarizabil-
ities of the hydrogen chains, but ours may be the first SIC
calculation for the hyperpolarizabilities of the chains.

The linear hydrogen chains �with the structure described
below� usefully model the response properties of the more
complicated polymers such as polyacetylenes, and have
proven a challenging test for density functionals �4,6,32�.
The linear hydrogen chains we selected have alternating
bond lengths with interatomic distances of 2 and 3 bohrs
�4,6�. These interatomic distances are beyond the covalent
bond length, so the system is only weakly connected and has
identifiable fragments �the H2 chain units� with fractional
charges, leading to substantial self-interaction errors of
semilocal functionals. We compute the polarizability and
second hyperpolarizability for hydrogen chains with increas-
ing chain length, reporting our results in Tables I and II.

The polarizabilities and second hyperpolarizabilities are
computed as the derivatives of the dipole moment � or en-

TABLE I. Longitudinal polarizabilities � with semilocal and
self-interaction-corrected density functionals for hydrogen chains of
increasing length. The MP4 and CCSD�T� values are the standard
of accuracy. The 6-311+ +G�d,p� basis set was used in all calcu-
lations except where noted. The MP4-acT calculations employ a
larger aug-cc-pVTZ basis set. All values are in atomic units.

Method H4 H6 H8 H12 H14

LSD 37.6 72.9 115.3 212.1 263

PBE 36.0 69.3 108.7 197.5 244

HF 32.2 56.6 83.0 138.6 167

MP4 29.5 51.9 76.2 127.3 155

MP4-acT 30.1 53.1 78.2

CCSD�T� 29.0 50.9 74.4 124.0

PZ-SIC-LSDa 33.0 59.7 89.1 152.0 184

PZ-SIC-PBEa 33.7 60.8 87.2 155.9 189

k=1 SIC-LSDa 32.6 58.6 87.2 148.3 180

k=2 SIC-PBEa 34.0 62.6 94.8 164.6 200

LSDb 37.6 72.7 114.6 210.5

xKLIb 33.1 60.2 90.6 156.3

xOEPb 32.2 56.6 84.2 138.1

aThe DFT calculations use grid=120770.
bReference �5�.
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ergy E with respect to the applied longitudinal electric field
F: �=�� /�F and �=�3� /�3F, from the Taylor expansion of
the energy or dipole moment of the molecule in the presence
of an electric field F: ��F�=�F+�F3 /6, and

E�F� = E�0� − �F2/2 − �F4/24 �3�

for a molecule with inversion symmetry in zero field
�F=0�. By the Hellmann-Feynman theorem, the derivative of
the ground-state energy is the same as the dipole moment:
dE /dF=−��F�. In a precise calculation, the dipole expres-
sions stemming from the energy and from the integral of the
total charge density become equal. But numerically this
could require a huge grid and basis set. Equal convergence
cannot be assured for both energy and charge. The energy
has a second-order error in convergence while the dipole has
a first-order one. Thus an inconsistency appears when the
dipole moment is taken from the total charge density, and in
reported calculations we use only the energy in order to ex-
tract the derivatives.

Our approach is to make a least-squares fit of Eq. �3� to
calculated energies for evenly spaced fields F in the range
0	F	Fmax. The maximum Fmax of the external electric
field requires special care. When Fmax is too small, the hy-
perpolarizability effects are too small to resolve. When Fmax
is too large, the contributions of higher hyperpolarizabilities
cannot be ignored. A proper Fmax lies on a plateau over
which the extracted polarizability and hyperpolarizability are
stable. The width of this plateau could be increased by using
polynomials of higher than fourth order in Eq. �3�. In this
work, we have chosen Fmax=0.007 a.u., which makes the
hyperpolarizability term in Eq. �3� less than 1% of the polar-
izability term. For the longer chains treated with semilocal
functionals, this Fmax may be too large for optimum accu-
racy. We will investigate this point in future work.

To avoid the contribution of the first-order hyperpolariz-
ability and enhance the numerical accuracy, we used the in-

version symmetry of the hydrogen chains to construct and fit
to an even function for the energy versus electric field. This
way the odd coefficients disappear for the energy polyno-
mial. A fourth-order polynomial was used in the fitting pro-
cedure to the energy. Polarizabilities are computed with good
accuracy. The second hyperpolarizability, however, is the
fourth-order derivative with respect to the energy, and it
shows extreme sensitivity to any change of �or numerical
error in� the calculated energy, leading to an uncertainty of as
much as 
20% in the computed values.

Basis-set completeness appears to be a factor that strongly
influences the nonlinear response properties. It has been
shown �32� for hydrocarbons that an adequate basis set to
compute accurate response properties is of double-zeta qual-
ity with diffuse functions. In this work, a triple-zeta quality
basis set with one diffuse function for hydrogen was chosen
for the hydrogen chains, as in Ref. �4�. We present the per-
formance of the LSD and PBE-GGA density functionals
without and with the PZ-SIC �k=0� and scaled-down SIC
�k=1 or 2� approaches, applying ultrafine and unpruned in-
tegration grids respectively. The larger unpruned grid in-
volves 120 radial and 770 angular points per shell in our
calculations. As a standard, the fourth-order Møller-Plesset
�MP4� polarizabilities and hyperpolarizabilities were com-
puted as well. All calculations were carried out with the de-
velopmental version of the Gaussian suite of programs �33�
with the 6-311+ +G�d,p� basis set. The MP4 values change
only slightly upon improvement of the basis set to aug-
mented correlation-consistent polarized-valence zeta �aug-
cc-pVTZ�, or improvement of the electron correlation
method to CCSD�T�.

Our results are presented in Tables I �polarizability� and II
�hyperpolarizability�. Regardless of the density functional
employed, all SIC methods dramatically improve the hyper-
polarizabilities and polarizabilities. The improvement
strengthens toward the longer chains.

We believe that PZ-SIC performs like Hartree-Fock
theory for the electrical response for the following reason:
Each H2 unit of an H2n chain is a partly isolated open system
in which the average electron number deviates from an inte-
ger. Over such a system, the exchange-hole density around
an electron integrates to the same number in PZ-SIC �26,23�
as in Hartree-Fock theory �24�. This number degrades
slightly in scaled-down SIC �23�, and substantially for
semilocal functionals without SIC. Thus the exchange energy
�exact in Hartree-Fock theory� of this open system is de-
scribed well by PZ-SIC, leading to approximate many-
electron self-interaction freedom �as defined earlier�. But the
exchange energy degrades as we move toward the semilocal
density functionals.

Partly isolated open systems arising from moderately
stretched bonds are found not only in the H2n chains but also
in the transition states of chemical reactions. For the energy
barriers that arise from the transition states, both PZ and
scaled-down SIC work well �28�. So it is not surprising that
the same is found here for the electrical response of the H2n
chains. For the highly stretched bonds that arise in the dis-
sociation limit �23,34,35�, PZ-SIC is superior �23� to scaled-
down SIC, while the opposite is true �28,29� for the equilib-
rium bonds of molecules. Moderately stretched bonds may

TABLE II. Same as Table I but for the longitudinal second
hyperpolarizabilties �. Here � /103 is displayed.

Method H4 H6 H8 H12 H14

LSD 23 102 315 1500 2900

PBE 21 100 289 1300 2400

HF 9 31 63 154 206

MP4 13 35 76 193 271

MP4-acT 10 37 78

CCSD�T� 10 34 72 176

PZ-SIC-LSDa 9 31 88 177 325

PZ-SIC-PBEa 4 44 78 149 187

k=1 SIC-LSDa 7 33 88 187 172

k=2 SIC-PBEa 9 34 83 193 260

LSDb 23 101 280 1200

xKLIb 10 36 90 300

xOEPb 9 30 68 144

aThe DFT calculations use grid=120770.
bReference �5�.
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represent a crossover point where both versions of SIC work
well.

Our numerical results and arguments suggest that an ac-
curate treatment of the hyperpolarizability of stretched hy-
drogen chains requires at least approximate many-electron
self-interaction freedom, as achieved by SIC or exact-
exchange methods. Full self-consistency or direct minimiza-
tion of the energy is apparently also needed, as suggested by
the superiority of Hartree-Fock or exchange-only OEP to
exchange-only KLI. In separate work �36�, we will present a

simple analytic charge-transfer model to further explain the
strong nonlinearity and SIC dependence seen, for example,
in Fig. 1, and we will refine the numerical accuracy of the
hyperpolarizabilities reported here.
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