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Linear H2n chains of H2 units are experimentally unrealizable but simple and widely studied exemplars of
the response coefficients �polarizabilities and hyperpolarizabilities� of polymer chains in uniform longitudinal
electric fields. They show two surprising features: �1� Their response coefficients, unlike those of bulk solids,
show a strong nonlinear dependence upon length or n. �2� Their response coefficients are seriously too large
when computed with standard local or semilocal density functionals, but are much more correct when com-
puted with self-interaction-free approaches �including Hartree-Fock�. We propose a simple charge-transfer
model which explains both of these effects in analytic terms. In this model, charge is transferred between H2

units paired up at equal distances from but on opposite sides of the chain center. All symmetric pairs of H2

units, not just the one for the chain ends, are included. This transfer is driven by the external electric field, and
opposed by the chemical hardness of each H2 unit. Unlike the situation in a bulk solid, this charge transfer is
not suppressed �or even much affected� by electrostatic interactions among the transferred charges for n�7.
Self-interaction-free approaches increase the chemical hardness of an H2 unit in comparison with semilocal
density functionals, and so reduce the charge transfer. The physical picture behind the model is validated and
its limitations are revealed by an analysis of the charge density from self-consistent electronic structure
calculations. An appendix presents an accurate method to extract the hyperpolarizability from self-consistent
calculations, and its results.
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I. INTRODUCTION

When a centrosymmetric linear molecular chain is placed
in a longitudinal weak electric field F, its energy is lowered
by

�E = − 1
2�F2 − 1

24�F4, �1�

where � is the polarizability and � is the second hyperpolar-
izability �important for nonlinear optics�. Typically � and �
show a strongly nonlinear dependence upon chain length
�1–7�, although a parallel stacking of long chains to make a
three-dimensional solid would show a linear dependence.

Standard semilocal density functionals like the local spin-
density approximation �LSD� �8� and the generalized gradi-
ent approximation �GGA� �9� work well for many problems,
but seriously overestimate � and especially � for molecular
chains, while Hartree-Fock �HF� or exact-exchange approxi-
mations and the Perdew-Zunger self-interaction correction
�SIC� �10–15� to the semilocal approximations perform
much better �1–7,16�; see also Appendix A. �SIC is also
important for molecular electronics �17�.�

These facts are well known, but perhaps not so well un-
derstood. Here we will present a simple charge-transfer
model which explains them qualitatively, confirming the ar-
guments of Refs. �3,7,16�. Thus we emulate an older and
currently less-followed tradition of theoretical physics, in
which semiquantitative analytic models are used to test and
confirm physical insights into the results of real or numerical
experiments. The model is based on and tested for the linear
H2n chains that were proposed in Ref. �1� as exemplars of
real polymer chains. In H14, for example, LSD overestimates
the hyperpolarizability by more than a factor of 10. Our
model is too simple for many quantitative or predictive pur-

poses, but not for explanatory ones. The failure of semilocal
functionals for charge-transfer problems is a well understood
�18� consequence of self-interaction errors.

Atomic units are used throughout this paper. The conver-
sion factors for SI units are the following: energy, 1 hartree
=4.359 748�10−18 J; length, 1 bohr=0.529 177�10−10 m;
dipole moment, 1ea0=8.4784�10−30 C m; octapole mo-
ment, 1 a.u.=2.3742�10−50 C m3; polarizability �, 1 a.u.
=1.6488�10−41 C2 m2 J−1=0.148 18 Å3; second hyperpolar-
izability �, 1 a.u.=6.2354�10−65 C4 m4 J−3.

II. CHARGE-TRANSFER MODEL FOR H2n CHAINS

Consider a linear chain of H2 units. Each H2 unit is a
“molecule” of bond length 2 bohr, and is separated from the
next H2 unit by 3 bohr, where both lengths are measured
between nuclei. An H2n chain has an integer number n of
such units, each of length l0=5 bohr.

Each H2 unit is assumed identical to every other H2 unit
within a chain of given size n. There are two kinds of charge
transfer, within an H2 unit and between two H2 units, which
will be modeled separately. In the absence of charge transfer
between H2 units, and neglecting interaction among the
H2 units, the total energy change due to a uniform longitu-
dinal electric field F is n times the change per unit.
Thus the total polarizability and hyperpolarizability in the
absence of charge transfer are interpolated linearly as
�=�1+ �̄�n−1� and �=�1+ �̄�n−1�. Here �1 and �1 are the
values for n=1, while �̄ and �̄ are the values per H2 unit for
n=�.

Now allow charge transfer between two H2 units located
symmetrically on opposite sides of the chain center. Let l be
the distance between the centers of these two units, and let �
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electrons be transferred in the direction opposite to F, from
the center of one H2 unit to the center of the other. Neglect-
ing for a moment the electrostatic interaction between the
transferred charges, the electrostatic energy is lowered by the
change −Fl�. The energy of each unit in the absence of field
is assumed to have an expansion in powers of � through
order �4. The energy of the unit that acquires � electrons is
changed by 	1�+	2�2+	3�3+	4�4, while that of the unit
that loses � electrons is similarly changed by
	1�−��+	2�−��2+	3�−��3+	4�−��4.

To find �, we must minimize the total energy change

� = 2	2�2 + 2	4�4 − Fl� . �2�

Here 	2
0 is proportional to the “chemical hardness”
�19–24� of an H2 unit in an H2n chain, and 	4�0 is propor-
tional to a “hyperhardness.” Setting to zero the derivative of
Eq. �2� with respect to � gives

0 = 4	2� + 8	4�3 − Fl . �3�

Under the assumption that the field F is weak and � is small,
this cubic equation can be solved by iteration. The first itera-
tion gives �= �l /4	2�F, and the second gives

� =
l

4	2
F −

	4l3

32	2
4F3. �4�

The energy change associated with this charge transfer is
found by inserting Eq. �4� into Eq. �2� and truncating at order
F4,

� = −
l2

8	
F2 +

	4l4

128	2
4F4. �5�

Equation �5� has F2 and F4 terms, like Eq. �1�.
Finally consider the collection of all symmetric pairs of

H2 units in the H2n chain. Let the integer j label the H2 units,
starting from j=1 at one end of the chain and ending
at j=n at the other end. If n is even, there are n /2 symmetric
pairs. If n is odd, there is one unpaired �and uncharged� H2
unit at the chain center, leaving �n−1� /2 symmetric pairs.
The jth H2 unit is the first unit of a symmetric pair if j�J,
where J is the number of symmetric pairs,

J = �n/2 �n even� ,

�n − 1�/2 �n odd� .
� �6�

The distance between the center of the jth H2 unit
�1� j�J� and that of its symmetric partner �if it has one� is

lj = �n + 1 − 2j�l0, �7�

which varies from a maximum of l1= �n−1�l0 to a minimum
of lj = l0 �for n even� or 2l0 �for n odd�, for j�1.

The distribution of the transferred charge will be antisym-
metric about the chain center, and the energy will depend on
this distribution but not on how it was established. The
change in the total energy due to the field F is thus found by
summing the contributions from all H2 units and all symmet-
ric pairs of H2 units. With the help of Eqs. �1� and �5�, we
find that the H2n polarizability is

� = �1 + �̄�n − 1� +
1

4	2
�
j=1

J

lj
2, �8�

and the H2n hyperpolarizability is

� = �1 + �̄�n − 1� −
3

16

	4

	2
4�

j=1

J

lj
4. �9�

The charge-transfer terms in Eqs. �8� and �9� introduce a
highly nonlinear dependence on chain length l0n. In the limit
of large n, the sums over j in Eqs. �8� and �9� can be replaced
by integrals which become �l0n�3 / �6l0� and �l0n�5 / �10l0�, re-
spectively. In a three-dimensional solid constructed by paral-
lel stacking of identical long chains, these terms would be
suppressed by the electrostatic interactions among the trans-
ferred charges, because volume charge densities in macro-
scopic solids are energetically unacceptable. �For example,
the energy of a sphere of radius R containing a uniform
charge density increases as R5, much faster than the volume.�
For short single linear chains, however, the electrostatic in-
teractions among the transferred charges are almost negli-
gible, as shown in Appendix B.

III. RESULTS AND DISCUSSION

For H2n chains with n�7, and for electric fields with
�F��0.008 a.u., the first term in the energy change of Eq. �1�
is of order millihartrees, and the second is less than or equal
to about 1% of the first, as shown in Fig. 1.

The parameters of our model are presented in Table I. The
polarizability �1 and hyperpolarizability �1 for a single H2
unit �n=1� were computed self-consistently by the method
described in Appendix A, which refines the method of Ref.
�16�. The infinite-chain parameters �̄ and �̄, the chemical
hardness parameter 	2, and the hyperhardness parameter 	4
were found by least-squares-error fitting of our Eqs. �8� and
�9� �with the small corrections of Eqs. �B5� and �B6�� to the
polarizabilities � and hyperpolarizabilities � for H2n chains
with n�7, as calculated self-consistently in Appendix A.
Note from Table I that 	2 in the Hartree-Fock �HF� approxi-
mation is about 3 times larger than it is in the local spin-
density �LSD� approximation. This result is in accord with
the interpretation of Ref. �16�: Self-interaction correction
makes the electrons stick tighter to the H2 units, making it
harder to move the electron number on a unit away from the
integer 2. In the limit where the H2 units become far sepa-
rated from one another, a kink or derivative discontinuity
appears at N=2 in the exact energy of a chain unit as a
function of the number N of electrons on it, and LSD fails to
produce the correct derivative discontinuity while HF more
nearly produces it. In the language of Refs. �12–15�, HF is
more nearly “many-electron self-interaction-free” than LSD
is.

For H4, there is only one charge transfer �, from the first
H2 unit to the second and last one. Figure 2 plots our Eq. �2�
for the energy change associated with this charge transfer,
first for no electric field �F=0� and then for F=0.008 a.u. It
is clear from Fig. 2 that an H2 unit in H4 is chemically harder
in HF than in LSD, and as a result the field is able to transfer
less charge after self-interaction correction.
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Equation �4� with l= lj of Eq. �7� determines the model
distribution of transferred charge over the H2 units labeled
j=1,2 , . . . ,n. Figure 3 shows this distribution for H14 at the
HF level. Note that the charge is antisymmetric about the
chain center.

Since the main difference in the model parameters is
that 	2�HF�	2�LSD�, Eqs. �8� and �9� show that self-
interaction correction will reduce � somewhat �		2

−1� and �

by much more �		2
−4�. Figures 4 and 5 confirm this, and also

show the mild nonlinearity of � as a function of n, and the
stronger nonlinearity of � as a function of n, which can also
be understood from Eqs. �8� and �9� as discussed in Sec. II.

The Coulomb interaction among the transferred charges
has been treated as a first-order perturbation in our model.
Table II and Appendix B show that this treatment is justified
for linear H2n chains with n�7, although this interaction

TABLE I. Parameters �in a.u.� of the charge-transfer model for
the electrical response of H2n chains. �1 and �1 are computed self-
consistently for a single H2 unit, while �̄, �̄, 	2, and 	4 were fitted
to such calculations for 1�n�7. �l0=5 bohr.�

Parameters LSD HF

�1 12.6 12.4

�1 /103 1.09 0.35

�̄ 29.3 21.8

�̄ /103 87.0 20.4

	2 4.51 14.66

	4 −4285.0 −21930.0

FIG. 1. Energy change of Eq. �1� vs electric field F for an
H14 chain. The upper panel is the polarizability term, and the
lower panel is the hyperpolarizability term. �=165.7 a.u. and
�=202 900 a.u. from the self-consistent HF calculations of Appen-
dix A and Ref. �16�.

FIG. 2. Energy change � vs transferred electron number � for an
H4 chain, using model parameters from Table I. The upper panel is
without electric field, and the lower panel is for electric field
F=0.008 a.u.

FIG. 3. Electron number � transferred to the jth chain unit in
H14 vs H2 unit index j, for H14 in electric field F=0.008 a.u., using
model parameters from Table I. The electric field points to the right-
hand-side and drives electrons to the left-hand-side.
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starts to suppress the electrical response coefficients for n
�6.

In summary, our model shows that the strong nonlinearity
of the polarizability and hyperpolarizability of an H2n chain
as functions of n are to a considerable extent consequences
of charge transfer between H2 units. This transfer is not sup-
pressed by Coulomb interaction among the transferred
charges for linear chains with n�7, although it may be
strongly suppressed in three-dimensional solids or in longer
single chains. The model also shows that local and semilocal
functionals exaggerate the charge transfer because they pre-
dict too little chemical hardness for the H2 units within the
chain, and that self-interaction correction �as present, for ex-
ample, in HF� reduces and corrects the electrical response by
predicting a larger and more realistic hardness.

IV. VALIDATION AND LIMITATIONS OF THE PHYSICAL
PICTURE BEHIND THE MODEL

To validate and delimit the physical picture behind our
model, we revert to self-consistent electronic structure calcu-
lations for the H2n chains, as in Ref. �16�. We need a popu-
lation analysis to simplify the calculated charge density by

representing it as a collection of point charges.
The Mulliken, natural �NPA� and ChelpG �charges from

electrostatic potentials using a grid� population analyses �as
provided by the computer code of Ref. �25�� of the HF and
LSD electron densities for H14 show that there are net
charges on the H2 units even in the absence of field. Due to
the large diffuse basis set necessary for polarizability and
hyperpolarizability calculations, the Mulliken charges show
inconsistent random behavior and cannot be used for our
purposes. NPA charges behave better than Mulliken charges,
but they show nonsymmetric �unphysical� oscillations in the
middle of the chain. The HF and LSD ChelpG charges are
shown in Table III. The ChelpG method gives the central H2
unit of the H14 chain a very small positive charge

TABLE II. Model results �in a.u.� for the longitudinal polariz-
ability � and second hyperpolarizability � of H2n chains, without
and with the effect of the Coulomb �+C� interaction between the
transferred charges, for HF.

n � ��+C� � /103 ��+C� /103

1 12.4 12.4 0.35 0.35

2 34.6 34.6 20.8 20.8

3 57.7 57.7 42.0 42.1

4 82.1 82.1 66.1 66.1

5 108.1 108.1 97.1 97.0

6 136.3 136.3 141.7 141.3

7 167.1 166.9 210.0 208.6

10 278.9 278.3 721.9 705.1

20 993.6 983.5 18045.0 16929.0

50 9959.0 9694.0 1737420.0 1547449.0

TABLE III. ChelpG atomic charges �in a.u.� for the atoms of the
H2 units in an H14 chain, in the absence of the electric field and in
the presence of an F=0.008 a.u. electric field along the chain. The
LSD and HF calculations use the 6-311+ +G�d , p� basis set.

Unit �j� Atom �i�

LSD HF

F=0 F=0.008 F=0 F=0.008

1 1 0.051 −0.041 0.052 −0.018

1 2 −0.080 −0.021 −0.086 −0.025

2 1 0.060 −0.017 0.068 −0.004

2 2 −0.043 0.015 −0.048 0.020

3 1 0.022 −0.046 0.025 −0.047

3 2 −0.013 0.047 −0.014 0.056

4 1 0.003 −0.060 0.004 −0.068

4 2 0.003 0.066 0.004 0.075

5 1 −0.013 −0.073 −0.014 −0.085

5 2 0.022 0.090 0.025 0.097

6 1 −0.043 −0.099 −0.048 −0.115

6 2 0.060 0.133 0.068 0.139

7 1 −0.080 −0.131 −0.086 −0.144

7 2 0.051 0.135 0.052 0.119

FIG. 4. Polarizability � vs number n of chain units in H2n. The
dashed and solid curves are based on the model with parameters
from Table I, fitted to self-consistent LSD and HF values of Appen-
dix A �shown as circles and diamonds, respectively�.

FIG. 5. Longitudinal second hyperpolarizability � �in a.u.� vs
number n of chain units in H2n. Here � /103 is displayed. The
dashed and solid curves are based on the model with parameters
from Table I, fitted to self-consistent LSD and HF values of Appen-
dix A �shown as circles and diamonds, respectively�. The off-scale
n=7 LSD values are self-consistent 2270, model 2325.
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�0.007 a.u.� and no dipole; the polarity of the H2 units in-
creases towards the chain ends �cf. Table III�. The ChelpG
charges provide a reasonable physical picture, so we have
used ChelpG charges for comparison with our model. In the
ChelpG scheme �26�, the point charges are chosen to repro-
duce the electrostatic potential at a number of points around
the outside of the molecule. �For H14, about 14 000 points
were fitted.�

Applying an F=0.008 a.u. electric field along the H2n
chain changes the atomic charges and the charges of the H2
units �cf. Tables III and IV�. The field-driven charge transfer
between H2 units �Table IV� is qualitatively like that in the
model �Fig. 3�, when we recall that transferred charge and
transferred electron number are equal and opposite in atomic
units. The dipole moments induced by the electric field in the
absence of charge transfer are shown in Table V and are
approximately ��1 /n+ �̄�1−1 /n��F+ ��1 /n+ �̄�1−1 /n��F3 /6
per chain unit, as in the model. In detail, the HF and LSD

induced dipole moments behave differently: In HF the larg-
est dipole moment is induced in the middle of the chain,
while in LSD the largest dipole moments are induced at the
chain ends �cf. Table V�.

The electric field also breaks the symmetry, increases the
electronic spatial extent of the molecule, and induces large
dipole and octapole moments �cf. Table VI�. The results in
Tables III, IV, and VI show that the LSD error manifests as a
soft electron density that is deformed too strongly by the
external field. The HF electron density is considerably stiffer.
Thus it gives more realistic polarizabilities and hyperpolar-
izabilities, as does the Perdew-Zunger �10� self-interaction
correction �PZ-SIC� in our previous study �16�. In that study
we have suggested that PZ-SIC performs like Hartree-Fock
theory for the electrical response. This is because each H2
unit of an H2n chain is a partly isolated open system in which
the average electron number is not integer. Over such a sys-
tem, the exchange-hole density around an electron integrates
to the same number in PZ-SIC as in Hartree-Fock theory.
Thus the exchange energy �exact in Hartree-Fock theory� of
this open system is described well by PZ-SIC, leading to
approximate many-electron self-interaction freedom �16,27�.
However, the exchange energy of the semilocal density func-
tionals is not correct as their exchange-hole density around
an electron integrates to an incorrect number. In this study
we do not repeat our earlier PZ-SIC numbers; the interested
reader should refer to our PZ-SIC results in Ref. �16�. We
also note that the software �25� used for the present study
does not support SIC.

Our model qualitatively describes the charge transfer
among H2 chain units driven by the electric field, and its
consequences. We omit several effects which, if included,
could lead to a more accurate but overfitted description: �1�
There are charge transfers even at zero field, driven by stand-
ing waves from the chain ends. �2� The hardness and hyper-
hardness of a chain unit could be greater for a unit near the
chain end than for one in an infinite chain. �3� The non-
charge-transfer contributions to the response coefficients
could show a nonlinear length dependence for chains of short
length.
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TABLE IV. ChelpG charges transferred by the longitudinal elec-
tric field F=0.008 a.u. to each of the H2 units in a linear H14 chain.
These results are based upon Table III, and are qualitatively similar
to the model prediction of Fig. 3. The transferred charge is defined
as qctj =qj,1�F=0.008�+qj,2�F=0.008�−qj,1�F=0�−qj,2�F=0�,
where qj,i is the ChelpG charge of the ith atom of the jth H2 unit in
Table III.

Unit �j� LSD HF

1 −0.033 −0.009

2 −0.018 −0.004

3 −0.008 −0.001

4 0.000 0.000

5 0.008 0.001

6 0.018 0.004

7 0.033 0.009

TABLE V. The dipole moment �in a.u.� induced on each H2 unit
of a linear H14 chain by the longitudinal electric field F
=0.008 a.u., calculated from the ChelpG atomic charges of Table
III. The charge transferred to an H2 unit by the field �Table IV� has
been taken out, leaving equal and opposite induced charges
��qdipj� on each H atom in that unit at a separation of a=2 bohr,
with dipole moment qdipja. In the notation of the caption of Table
IV, qdipj =qj,2 �F=0.008�−qj,2 �F=0�−qctj /2. For comparison,
our model predicts equal induced dipole moments ��1 /n+ �̄�1
−1 /n��F+ ��1 /n+ �̄�1−1 /n��F3 /6 �0.222 in LSD, 0.165 in HF� on
all units.

Unit �j� LSD HF

1 0.151 0.131

2 0.135 0.140

3 0.127 0.143

4 0.126 0.144

5 0.128 0.143

6 0.130 0.139

7 0.135 0.125

TABLE VI. Increase in the electronic spatial extent, �
r2�
= 
r2�F=0.008��− 
r2�F=0��, and the dipole and octapole moments
induced along the chain by electric field F=0.008 a.u. in the H14

chain. All results are in a.u. The HF and LSD calculations use the
6-311+G�d , p� basis set.

Property LSD HF

�
r2� 0.5747 0.2537

Dipole 2.395 1.343

Octapole 584.9 362.6
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APPENDIX A: PROCEDURE TO OBTAIN PRECISE
SECOND HYPERPOLARIZABILITY FROM THE

CALCULATED ENERGIES

The approach in our previous paper �16� was to make a
least squares fit of Eq. �1� to calculated energies for evenly
spaced fields F in the range 0�F�Fmax. In this approach
when Fmax is too small, the second hyperpolarizability is too
small to resolve. When Fmax is too large, the contributions of
higher hyperpolarizabilities cannot be ignored. In that work,
we choose Fmax=0.007 a.u. For the longer chains treated
with semilocal functionals, this Fmax may be too large for
optimum accuracy. In this appendix we shall investigate the
effect of this choice of Fmax.

To avoid the contribution of the first-order hyperpolariz-
ability and enhance the numerical accuracy, we used the in-
version symmetry of the hydrogen chains to construct and fit
to an even function for the energy versus electric field. This
way the odd coefficients disappear for the energy polyno-
mial. A fourth-order polynomial was used in the fitting pro-
cedure to the energy �cf. Eq. �1��. This procedure gave accu-
rate and stable polarizability values. However, the second
hyperpolarizability shows extreme sensitivity to any change
of �or numerical error in� the calculated energy, leading to an
uncertainty of about �20% in the SIC, LSD, and Perdew-
Burke-Ernzerhof �PBE� values. In order to decrease this un-
certainty we have developed alternative and more precise
ways to calculate the second hyperpolarizability, as presented
below.

The longitudinal polarizability � and second hyperpolar-
izability � of an H2n chain can be calculated by applying
twice Eq. �1� for two different fields Fi and Fj and solving
the two linear equations for � and �,

� =

2�En,i − En,1�Fj
4

Fi
4 − 2�En,j − En,1�

Fj
2 −

Fj
4

Fi
2

, �A1�

�/1000 =

0.024� �En,i − En,1�Fj
2

Fi
2 − En,j + En,1

Fj
4 − Fj

2Fi
2 , �A2�

where En,1 is the total energy of the H2n chain without field,
while En,i and En,j are the total energies in the presence of
fields Fi and Fj, respectively. The correctness of the � and �
obtained this way can be checked by applying multiple
fields. Our analysis shows that these simple formulas give
reasonably consistent results for HF and Møller-Plesset
�MP3� energies in the range of F=0.005–0.008 a.u. How-
ever, for LSD or PBE Eq. �A2� might give imprecise, field-
dependent values in the range F=0.001–0.008 a.u. For small
n a small F gives random second hyperpolarizability values
due to numerical errors, while for large n a large F gives a
serious overestimation of � because the higher hyperpolariz-
abilities cannot be ignored. Equation �A1� performs some-
what better, but not completely satisfactorily. To illustrate the
problems, we present some details. For the H14 chain with
LSD, the choice Fi=0.007 and Fj =0.008 a.u. gives �

=257.02 a.u. and � /1000=3729.8 a.u. This result can be
compared to the accurate polarizability calculated analyti-
cally by GAUSSIAN 03 using the polar keyword, �
=261.73 a.u. Using the choice Fi=0.002 and Fj =0.003 a.u.
gives �=261.62 a.u. and � /1000=2246.4 a.u. This shows
that for LSD or PBE inclusion of large field energies into the
fitting can seriously deteriorate the results for longer chains
�n
3�, so relatively small fields must be applied. The range
of the applied electric fields can be estimated by assuming
that an ideal maximum field Fmax makes the � term of Eq. �1�
a fixed small fraction C of the � term. Then

Fmax =�12
�

�
C . �A3�

Trial and error suggests C�0.01. This formula gives for
LSD or PBE Fmax=0.013, 0.009, 0.007, 0.005, 0.004,
0.0036, and 0.003 a.u. for H2n chains of n=2, 3, 4, 5, 6, 7,
and 8, respectively. Figure 6 shows the dependence of Fmax
from Eq. �A3� on n.

Second hyperpolarizabilities can be obtained alternatively
by using Eq. �1� and a precise �polar keyword� estimation for
�. In this way, we obtained a series of �’s for various field
strengths. We observed that, for larger F values than our
Fmax, the value of � starts to increase �due to higher order
terms�. In our previous paper we used the large field values
in the fitting procedure, and that biased considerably the
LSD and PBE values that were overestimated by at most
30%. In this paper we use � values that were obtained for

FIG. 6. Dependence of Fmax on n for the LSD second hyperpo-
larizability �, for H2n chains, from Eq. �A3�.

FIG. 7. LSDA second hyperpolarizability � �a.u.�: Dependence
on the electric field strength for the H14 chain.
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field strengths about Fmax. This procedure gives for H14 LSD
��2270 a.u., somewhat �22%� smaller than our previous
estimate of 2900 a.u. Our new estimation has a possible 2%
error. Figure 7 shows how the LSD second hyperpolarizabil-
ity � depends on the applied field strength for the H14 linear
chain.

Our accurate numerical results are shown in Tables VII
and VIII. We note that the HF method with a triple-zeta
polarized basis set gives a reasonable estimate of the polar-
izability, since the effect of electron correlation is small. The
hyperpolarizabilities are more sensitive to electron correla-
tion and to basis set, requiring diffuse functions for reliable
calculated values. The HF method slightly overestimates the
polarizabilities and underestimates the longitudinal hyperpo-
larizabilities, in comparison with third-order many-body per-
turbation theory �MP3�. These observations are in agreement
with those of Ref. �28�.

APPENDIX B: PERTURBATIVE TREATMENT
OF THE COULOMB INTERACTION AMONG

TRANSFERRED CHARGES

The contribution to the energy from Coulomb interaction
among transferred charges is the sum over all distinct pairs
�including unsymmetric pairs�

�
j=1

n

�
j�=j+1

n
� j� j�

�j� − j�l0
. �B1�

� j is given by Eqs. �4� and �7�,

� j = ajF + bjF
3, �B2�

aj =
1

4	2
lj , �B3�

bj = −
	4

32	2
4 lj

3. �B4�

Using Eq. �1� we find that the polarizability changes by

− 2�
j=1

n

�
j�=j+1

n ajaj�

�j� − j�l0
, �B5�

and the hyperpolarizability by

− 24�
j=1

n

�
j�=j+1

n ajbj� + aj�bj

�j� − j�l0
. �B6�

The relative contributions from �B5� and �B6� are very
small �Table II�, justifying the first-order perturbation treat-
ment applied here. A nonperturbative treatment would in-
volve solving linear equations for the aj and bj.
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