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We assess the performance of recent density functionals for the exchange-correlation energy of a nonmo-
lecular solid, by applying accurate calculations with the GAUSSIAN, BAND, and VASP codes to a test set of 24
solid metals and nonmetals. The functionals tested are the modified Perdew-Burke-Ernzerhof generalized
gradient approximation �PBEsol GGA�, the second-order GGA �SOGGA�, and the Armiento-Mattsson 2005
�AM05� GGA. For completeness, we also test more standard functionals: the local density approximation, the
original PBE GGA, and the Tao-Perdew-Staroverov-Scuseria meta-GGA. We find that the recent density
functionals for solids reach a high accuracy for bulk properties �lattice constant and bulk modulus�. For the
cohesive energy, PBE is better than PBEsol overall, as expected, but PBEsol is actually better for the alkali
metals and alkali halides. For fair comparison of calculated and experimental results, we consider the zero-
point phonon and finite-temperature effects ignored by many workers. We show how GAUSSIAN basis sets and
inaccurate experimental reference data may affect the rating of the quality of the functionals. The results show
that PBEsol and AM05 perform somewhat differently from each other for alkali metal, alkaline-earth metal,
and alkali halide crystals �where the maximum value of the reduced density gradient is about 2�, but perform
very similarly for most of the other solids �where it is often about 1�. Our explanation for this is consistent with
the importance of exchange-correlation nonlocality in regions of core-valence overlap.
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I. INTRODUCTION

Popular or standard generalized gradient expansion ap-
proximations �GGA� �Ref. 1� for the exchange-correlation
energy of Kohn-Sham density-functional theory2,3 improve
upon the local density approximation �LDA� for atomization
energies of molecules and enthalpies of formation derived
from atomization energies, but GGAs �e.g., PBE �Perdew-
Burke-Ernzerhof� �Ref. 1�� do not improve the calculated
lattice constants for typical nonmolecular solids. Phonon fre-
quencies, ferromagnetism, ferroelectricity, and many other
properties are critically volume dependent, and thus highly
accurate lattice parameters are indispensable for these prop-
erties. Neither LDA nor GGA is clearly to be preferred for
solid state applications, both giving errors of comparable
magnitude �though generally of opposite sign�. At all tem-
peratures, LDA systematically underestimates lattice con-
stants and coefficients of thermal expansion, whereas GGA
overestimates them.4 In contrast, LDA �GGA� overestimates
�underestimates� bulk moduli and phonon frequencies. This
behavior is a well established trend observed in numerous
previous studies.5 For a small set of nine metals, Grabowski
et al.5 have found that LDA underestimates the lattice con-
stant on average by −0.7% and GGA overestimates it on
average by 1.8%. Generally, the error in the bulk modulus, is
much larger in magnitude �LDA average, 11.6%; GGA aver-
age, −13.7%� and inversely related to the error in the lattice
constant. The inverse relation can be explained by the vol-

ume dependence of the total energy causing a monotonous
decrease in the equilibrium bulk modulus B0 with increasing
equilibrium volume.5 Recently a linear combination of GGA
and LDA results was applied �with 0.57 and 0.43 coeffi-
cients, respectively� for the equilibrium lattice constant of
Al.6

Popular GGAs �e.g., PBE �Ref. 1� and B88 �Ref. 7�
+GGA correlation� fail seriously for the exchange-corre-
lation component of the jellium surface energy, while LDA
performs surprisingly well in that case. A detailed analysis of
the exchange-correlation components shows that LDA ben-
efits from large error compensation. It has been observed8,9

that in GGAs this delicate balance between exchange and
correlation is not valid any more, although exchange and
correlation components of the surface energy are separately
improved.8,9 A recent study10 shows that even if the PBE
constraints are maintained, they can be satisfied by a con-
tinuous range of diminished gradient dependence �DGD�
GGAs lying between PBE and LDA. In DGD GGAs, a bal-
anced error cancellation between exchange and correlation is
restored, which in turn results in good surface ener-
gies.

Meta-GGAs using the positive kinetic energy density
�such as Tao-Perdew-Staroverov-Scuseria �TPSS�,11 which
adds several more exact constraints to those satisfied by
PBE� might give excellent jellium surface energies, but do
not improve sufficiently upon the lattice constants predicted
by standard semilocal approximations,9 although TPSS im-
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proves molecular atomization energies12 and many other
properties.13

Following the realization that popular GGA and meta-
GGA functionals fail for solid properties �e.g., for the
energy-volume equation of state, surface energies, etc.�, re-
cently many modified functionals �all GGAs� have appeared
in the literature providing improved results for solids at the
expense of worsening the atomic total and molecular atomi-
zation energies.14–16 Kohn and Mattsson17 proposed an alter-
native approach for incorporating effects of the inhomogene-
ity of the electron density: the Airy gas approximation, a
description of the electronic edge within the linear potential.
Vitos et al.18 constructed from that model a GGA for ex-
change �the local Airy gas or LAG functional� by fitting to
the Airy gas conventional exchange energy density, and this
exchange was combined with LDA correlation. In the ab-
sence of an Airy gas correlation energy density, the AM05
condition,19 fitting a density functional to the jellium surface
exchange-correlation �xc� energy, was used to construct the
AM05 GGA �Ref. 19� for correlation.

The exchange gradient expansion coefficient ��� of the
popular GGAs was set to obtain good atomic and atomiza-
tion energies and good thermochemistry �where enthalpies of
formation are traditionally calculated via atomization ener-
gies, not from the calculated energies of the standard states
of the elements�. This coefficient, however, is about twice as
large as for the exact slowly varying gradient expansion co-
efficient for exchange ��=0.22–25 vs 10 /81�0.123 46�.14

The PBE GGA can be rebiased toward solids and surfaces by
changing the exchange as well as the correlation gradient
coefficient.14 Recovering the slowly varying gradient expan-
sion for exchange for a wider range of the reduced density
gradient s �as defined in Sec. II�, combined with the jellium
surface energy condition19 for correlation,14 leads to a re-
vised PBE GGA for solids, named PBEsol GGA.14 Nonmo-
lecular solids have important valence regions over which the
density variation is so slow �with reduced gradient s�1� that
the exchange energy can be described by the second-order
gradient expansion. This suggests that recovery of the
second-order gradient expansion over this range of s is a
relevant constraint on a generalized gradient approximation
for exchange in solids �although a similar constraint is not so
relevant for correlation�.20 Importantly, the PBEsol performs
accurately for the exchange component of the jellium surface
energy, not relying on a fit to the latter. Furthermore, PBEsol
outperforms the original PBE GGA by correctly predicting
the energy differences between isomers of hydrocarbons,21

while most of the GGAs and meta-GGAs fail for this long-
standing problem.21 The larger gradient coefficient for ex-
change in the original PBE GGA is needed to produce the
correct asymptotic expansion of the exchange energy for a
neutral atom of large atomic number Z, as shown in Ref. 20.
In this large-Z limit, the electron density becomes slowly
varying over space, except near the nucleus and in valence
and tail regions.20 Under an appropriate scaling, atomic den-
sities can become slowly varying essentially everywhere.20

The performance of PBEsol was studied in several recent
papers. Ropo et al.22 compared the performance of the
PBEsol,14 PBE,1 AM05,19 and LAG �Ref. 18� approxima-
tions for 29 metallic bulk systems �mono- and divalent sp,

plus several 3d, 4d, and 5d metals�. These calculations were
performed using the exact muffin-tin orbitals �EMTO�
method. The EMTO method is a screened Korringa-Kohn-
Rostoker method that uses optimized overlapping muffin-tin
potential spheres to represent the one-electron potential. The
applied method has a limited precision �about 0.01 Å for the
lattice constant, and 4 GPa for the bulk modulus�, and the
calculations were compared to uncorrected experimental re-
sults �i.e., the lattice constants and bulk moduli measured at
300 K were used for many metals, and zero-point phonon
effects were ignored for all metals�. Nevertheless, the afore-
mentioned study confirms the good performance of the
PBEsol,14 LAG,18 and AM05 �Ref. 19� functionals for most
of the metals, except for the 3d metals. For these metals PBE
agrees better with the uncorrected experimental results. For
most 3d metals even the PBE functional gives too-small lat-
tice constants, and thus the even shorter lattice constants
given by PBEsol worsen the agreement. �Note that LDA re-
sults are quite poor for these metals.�

Other recent studies of PBEsol have also been made. The
PBEsol functional predicts correctly the two-dimensional–
three-dimensional �2D-3D� shape transition for gold
clusters.23 It was tested recently for the compression curves
of eight transition metals �Fe, Co, Ni, Zn, Mo, Ag, Pt, and
Au� in the Mbar pressure range.24 It was found that PBEsol
gives an equation of state �EOS� closer to experiment than
PBE for Mo, Ag, Pt, and Au, although the overall accuracy
of the PBE is somewhat better �due to the more accurate
�-Fe results�.24 PBEsol is expected14 to become more accu-
rate as a solid becomes more compressed under pressure. We
believe we can see evidence for this in Fig. 4 of Ref. 24,
even for the 3d transition metals. PBEsol was applied to the
B1 rock-salt-type phase of metallic thorium carbide,25 and
with considerable success to the structural, electronic, and
phonon properties of the cubic and tetragonal phases of
SrTiO3 and BaTiO3.26 PBEsol was also tested in a general
discussion of material simulations.27 The PBEsol of course
shares the limitations of all GGA functionals.14,28–30 Several
comments and replies on the GGAs for solids have appeared
recently.31–34 Contrary to what might be inferred from Refs.
33 and 34, no GGA can recover the correct fourth-order gra-
dient expansion for the exchange energy, even approxi-
mately, but a meta-GGA can �and TPSS in fact does, at least
for very slowly varying densities�.

The validation of Kohn-Sham xc functionals2,3 can be-
come particularly dubious if relatively low-precision theoret-
ical calculations are compared with experimental data with
sizable uncertainties, e.g., due to the lack of thermal and
anharmonic-expansion corrections in our case. The present
work compiles highly accurate anharmonic-expansion-
corrected experimental results and compares them with re-
sults obtained using methods based on either GAUSSIAN-type
orbital �GTO� basis sets as implemented in GAUSSIAN,35 nu-
merical atomic orbital �NAO�, and Slater-type orbital �STO�
basis sets as implemented in BAND �Ref. 36� �BAND/linear
combination of atomic orbitals, LCAO�, or projector aug-
mented plane waves �PAW� as implemented in VASP

�VASP/PAW�.37 Moreover, we present a suitable methodology
for testing density functionals for solids and revisit previous
results to be found in the literature.
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We use a test set of metals �main group and transition
metals� and nonmetals �semiconductors and ionic insulators�
comprising 18 solids compiled by Staroverov et al.38 The test
set contains four main-group metals �Li, Na, K, and Al�, four
transition metals �Cu, Rh, Pd, and Ag�, five covalent solids
�diamond, Si, �-SiC, Ge, and GaAs�, and five ionic solids
�NaCl, NaF, LiCl, LiF, and MgO�. This test set was extended
by six more main-group metals �Rb, Cs, Ca, Sr, Ba, and Pb�.
All solids were calculated in their ambient-condition crystal
structures and nonmagnetic phases.

II. DEFINITIONS

Here we summarize some standard definitions used in this
paper. Consider a solid in which the total energy per atom is
e, and the volume per atom is v. We can compute a binding
energy curve e�v�. The equilibrium volume v0 minimizes
e�v�,

de

dv
= 0 �v = v0� . �1�

The bulk modulus is related to the second derivative at the
minimum,

B0 = v
d2e

dv2 �v = v0� . �2�

The cohesive energy is the energy per atom needed to atom-
ize the crystal,

e��� − e�v0� . �3�

Measurements of these quantities include the effects of
nuclear vibration, while density-functional calculations give
most directly the values for a static lattice.

A GGA for the exchange-correlation energy can be writ-
ten as

Exc�n↑,n↓� =� d3r n�xc
unif�n�Fxc�s,rs,�� . �4�

Here n↑ and n↓ are the electron spin densities, n=n↑+n↓ is
the total density, and �xc

unif�n� is the exchange-correlation en-
ergy per particle of a spin-unpolarized electron gas of uni-
form density n. In atomic units �hartrees�,

�xc
unif�n� =

− 3

4�rs
�9�

4
�1/3

�n = 3/�4�rs
3�� . �5�

The enhancement factor Fxc, which distinguishes one
GGA from another, depends also upon the relative spin po-
larization �= �n↑−n↓� /n �which vanishes in our solids at
equilibrium, but not typically in their free atoms� and on the
reduced density gradient,

s =
	�n	

2�3�2n�1/3n
, �6�

which expresses how fast the density varies on the scale of
the local Fermi wavelength 	F=2� / �3�2n�1/3=3.274 rs.
The exchange enhancement factor Fx does not depend upon

rs �and in fact is the rs→0 limit of Fxc�. Plots of the enhance-
ment factors provide a way to visualize the s dependence of
the GGA. When s is set to zero, a GGA reduces to LDA.

III. METHODS

In our previous studies14,38 we used GTO basis sets devel-
oped for atomic and molecular calculations.39 This kind of
basis set frequently includes small-exponent �less than 0.10�
diffuse functions that are far reaching. Inclusion of diffuse
functions into a GTO basis set frequently improves the DFT
results for molecules.40 However, diffuse functions decay
very slowly with distance and slow down dramatically the
calculation of Coulomb contributions to the total energy of
crystals. For crystals the standard GTO basis sets have to be
modified as described in our earlier papers.14,38 The GTO
basis-set incompleteness limits the accuracy of the calculated
lattice constant to 0.03 Å for metals; however, for covalent,
semiconductor and ionic solids, carefully modified GAUSSIAN

basis sets might perform quite well.41 We compare our re-
sults to basis sets denoted by GTO1 used in Ref. 38 and
GTO2 used in Refs. 14 and 41. The two basis sets are dif-
ferent for C �diamond�, Si, SiC, Ge, GaAs, and MgO.

As demonstrated in Ref. 42, PBE equilibrium lattice con-
stants obtained using PAW �VASP, Ref. 37� and full-potential
linearized augmented plane-wave �FP-LAPW, WIEN2K �Ref.
43�� methods are de facto identical. In addition, comparing
those PBE lattice constants to the ones obtained using the
LCAO code BAND, one realizes that BAND results compare
very well to the results obtained using the aforementioned
codes �see Table I�. Hence, those codes give consistent re-
sults, which are free from the problems arising when
GAUSSIAN basis sets are used for extended systems. In this
work, we compare our earlier results14,38 calculated using a
modified version of the GAUSSIAN program35 with results cal-
culated using BAND and VASP. Our PBE results from VASP

can be directly compared to those of Paier et al.42 The dis-
crepancies are small and caused by slight differences in the
volume range governing the Murnaghan fits. Importantly,
none of the differences affect any conclusions.

The VASP calculations presented in this work are based on
the PAW,44,45 which describes the electron-ion interaction.
Characteristics of PAW are �i� the inclusion of effects of the
nodal structure of valence wave functions close to the ionic
cores and �ii� the preservation of the orthogonality between
the valence and the core states. Note that the chemically inert
core states are usually kept frozen, but this is not inherent to
PAW. For a profound description of an all-electron �i.e., no
frozen cores� implementation of PAW into VASP, we refer the
reader to the literature.46 Note that all PAW core potentials
include scalar relativistic corrections. At this point, the au-
thors wish to briefly discuss two issues: first, the precision of
the frozen-core PAW implementation of VASP has been thor-
oughly tested against the all-electron full-potential linearized
augmented plane-wave �FP-LAPW� plus local orbitals �lo�
method �WIEN2K �Ref. 43��, which is commonly regarded as
the benchmark method for solid state applications. For a test
set comprising main-group metals �Li, Na, and Al�, d metals
�Cu, Rh, Pd, and Ag�, as well as semiconducting and ionic
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insulators �C, GaAs, and MgO�, the agreement between PAW
and FP-LAPW+lo results �lattice constants, bulk moduli� is
excellent �see Sec. B.1 of Ref. 42�. Second, it is possible to
use multiple xc functionals on the same set of PAW core
potentials without sacrificing the high precision.47 Possible
transferability errors are largely reduced, if not eliminated,
by virtue of the consistent recalculation of the core-valence
interaction with the selected density functional. Although the
core states are frozen in the configuration determined as the
PAW core potential is generated using a density functional
which might differ from the selected one, the errors thereby
introduced are insignificant �e.g., LDA PAW core potentials,
combined with the PBEsol xc functional in an actual appli-
cation; for more details see Sec. III of Ref. 48�. The PAW
pseudopotentials we have used are summarized in the
Supplementary Material. The technical specifications to the
VASP calculations read as follows: for the PBEsol calcula-
tions, a kinetic energy cutoff of 500 eV was used, except for
Li �600 eV�. All Brillouin zone integrations were performed
on 
-centered symmetry-reduced Monkhorst-Pack49 k-point
meshes, using the tetrahedron method with Blöchl
corrections.50 For Li �20�20�20�k points and for the re-
maining solids �16�16�16�k points were used. As outlined
in Sec. III of Ref. 42, this setup ensures that the results are
converged to within all specified digits. In the calculations
for K and Ge presented in Tables V and VI of this work,
�24�24�24�k points were used. A plane-wave cutoff of
600 eV was applied to K and a cutoff of 750 eV was applied
to Ge. To minimize errors arising from the frozen core ap-
proximation, we used PAW data sets treating the K 3s and 3p
states and the Ge 3d states as valence electrons.

BAND LCAO calculations were performed at a benchmark
level with the finest grid available, together with a very
dense k-space sampling �keywords in BAND: accuracy 6,
Kspace 7�, using the LDA electron densities. In other words,
the BAND results for the beyond-LDA functionals are not
fully self-consistent and demonstrate that full self-

consistency is not needed for high accuracy. We use the large
QZ4P basis set consisting of numerical atomic orbital core
orbitals and one NAO plus three Slater-type orbitals for the
valence functions. The core is kept frozen during the self-
consistency loop and very small in order to eliminate any
significant effects of this approximation. For a discussion of
errors in BAND/LCAO calculations, we refer the reader to
Ref. 51. We estimated the effect of self-consistency using the
TZ2P basis set and found a 0.002 Å effect on the lattice
constant and a 0.5% effect on the bulk moduli. The relativ-
istic calculations were performed within the zeroth-order
regular approximation �ZORA�,52 an accurate approximation
to the Dirac equation. For details of the implementation, see
Ref. 53. We checked the spin-orbit effects, and found them
negligible for the solids in this study.

We estimated the equilibrium lattice constant a0, bulk
modulus B0, and pressure derivative B1 at T=0 K by calcu-
lating the energy of the unit cell at 7–15 points in the range
v0�5% �where v0 is the equilibrium volume per atom�, then
fitting the data to analytic equations of state e�v�. The rela-
tion between the lattice constants and the monoatomic cell
volumes is: v0=a0

3 /2 for the A2�bcc� crystal, v0=a0
3 /4 for the

A1�fcc� crystal, and v0=a0
3 /8 for the other solids in this

study.
For the present study we use the structureless pseudopo-

tential model54 or “stabilized jellium” equations of state
�SJEOS�.55 It is almost ideally suited for the description of
the regime close to the equilibrium volume. The form of the
SJEOS is motivated by a physical picture of cohesion. We fit
the SJEOS to the energy-volume data by minimizing the
least-square error. As a check, we also used the Murnaghan
EOS, which is more standard but has no microscopic foun-
dation. In the present paper, we give B0 in units of GPa
�1 a.u.=29 421 GPa�.

IV. LATTICE CONSTANTS

The experimental lattice constants include zero-point pho-
non effects �ZPPEs�, and are often measured at room tem-

TABLE I. Statistical data for the equilibrium lattice constants �Å� of the 18 test solids of Ref. 38 at 0 K calculated from the SJEOS. The
Murnaghan EOS yields identical results within the reported number of decimal places. Experimental low temperature �5–50 K� lattice
constants are from Ref. 56 �Li�, Ref. 57 �Na, K�, Ref. 58 �Al, Cu, Rh, Pd, Ag�, and Ref. 59 �NaCl�. The rest are based on room temperature
values from Ref. 60 �C, Si, SiC, Ge, GaAs, NaF, LiF, MgO� and Ref. 57 �LiCl�, corrected to the T=0 limit using the thermal expansion from
Ref. 58. An estimate of the zero-point anharmonic expansion has been subtracted out from the experimental values �cf. Table II�. �The
calculated values are precise to within 0.001 Å for the given basis sets, although GAUSSIAN GTO1 and GTO2 basis-set incompleteness limits
the accuracy to 0.02 Å.� GTO1: the basis set used in Ref. 38. GTO2: For C, Si, SiC, Ge, GaAs, and MgO, the basis sets were taken from
Ref. 41. For the rest of the solids, the GTO1 basis sets and effective core potentials from Ref. 38 were used. The best theoretical values are
in boldface. The LDA, PBEsol, and PBE GTO2 results are from Ref. 14. The SOGGA GTO1 results are from Ref. 15.

LDA LDA PBEsol PBEsol PBEsol AM05 SOGGA PBE PBE PBE TPSS

GTO2 VASP GTO2 BAND VASP VASP GTO1 GTO2 VASP BAND BAND

MEa �Å� −0.047 −0.055 0.022 0.010 0.012 0.029 0.009 0.075 0.066 0.063 0.048

MAEb �Å� 0.050 0.050 0.030 0.023 0.023 0.036 0.024 0.076 0.069 0.067 0.052

MREc �%� −1.07 −1.29 0.45 0.19 0.24 0.58 0.19 1.62 1.42 1.35 0.99

MAREd �%� 1.10 1.15 0.67 0.52 0.52 0.80 0.50 1.65 1.48 1.45 1.10

aMean error.
bMean absolute error.
cMean relative error; �calculated-experimental�/experimental 100%.
dMean absolute relative error.
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perature. These experimental values are not directly compa-
rable with the results of ground-state electronic structure
calculations �0 K�. We show here that neglecting these fre-
quently overlooked effects might invalidate any comparison
of experiment and theory. The experimental low temperature
�5–50 K� lattice-constants values are from Ref. 56 �Li, Sr�,
Ref. 57 �Na, K, Rb, Cs, and Ba�, Ref. 58 �Ca, Al, Pb, Cu, Rh,
Pd, and Ag�, and Ref. 59 �NaCl�. The rest are based on
room-temperature values from Ref. 60 �C, Si, SiC, Ge,
GaAs, NaF, LiF, MgO�, and from Ref. 57 �LiCl�, corrected to
the T=0 limit using thermal expansion corrections from Ref.
58. For MgO Ref. 61 gives a lattice constant at 77 K that is
smaller than our estimated 0 K data and we use that value
�4.203 Å�. �Note that a linear extrapolation of the lattice
constant from 300 to 0 K is neither accurate nor used here.�
For lattice constants the ZPPEs manifest as zero-point anhar-

monic expansion �ZPAE�. This effect may be estimated from
Eq. �A6� of Ref. 55,

a0

a0
=

v0

3v0
=

3

16
�B1 − 1�

kB�D

B0v0
. �7�

The ZPAE was estimated from experimental a0, B0, v0,
and �D �Debye temperature� and from corrected theoretical
SJEOS B1

TPSS values as described in Ref. 38. Note that v0 in
Eq. �7� is the volume per atom in the crystal. The ZPAE
corrections for C, Si, SiC, Ge, GaAs, NaCl, NaF, LiCl, LiF,
and MgO are incorrectly given in Ref. 38; those values
should be multiplied by 2 �as in the errata to Refs. 14 and
38�. The magnitude of this correction is in the range of 0.003
and 0.046 Å �LiF�, and it is relatively large for alkali metals
�0.8, 0.4, and 0.3% for Li, Na, and K, respectively� and ionic

TABLE II. Strukturbericht symbols �Str.� and equilibrium lattice constants �Å� of 24 test solids calculated
with BAND/LCAO from the SJEOS. The Strukturbericht symbols are used for the structure as follows: A1,
fcc; A2, bcc; A4, diamond; B1, rock salt; B3, zinc blende. The Murnaghan EOS yields identical results within
the reported number of decimal places. Low-temperature �5–50 K� experimental lattice constants values are
from Ref. 56 �Li, Sr�, Ref. 57 �Na, K, Rb, Cs, and Ba�, Ref. 58 �Ca, Al, Cu, Rh, Pd, and Ag�, and Ref. 59
�NaCl�. The rest are based on room-temperature values from Ref. 60 �C, Si, SiC, Ge, GaAs NaF, LiF, and
MgO� and Ref. 57 �LiCl�, corrected to the T=0 limit using the thermal expansion from Ref. 58. An estimate
of the zero-point anharmonic expansion is subtracted out from the experimental values �shown in boldface�.
The best theoretical values are also in boldface. We show, for reference, the AM05 values from VASP. For K,
Ge, Rb, Cs, Ca, Sr, Ba, and Pb, we have computed the AM05 values for this work; for the other solids, we
have taken the AM05 values from Ref. 48. Note that, for the alkali and alkaline-earth metals and alkali
halides, AM05 values are often closer �Ref. 32� to PBE than to PBEsol.

Solid Str. LDA PBEsol AM05 PBE TPSS Expt.-ZPAE ZPAE

Li A2 3.363 3.428 3.455 3.429 3.445 3.449 0.028

Na A2 4.054 4.167 4.212 4.203 4.240 4.210 0.015

K A2 5.046 5.210 5.297 5.284 5.360 5.212 0.013

Rb A2 5.373 5.561 5.670 5.667 5.736 5.576 0.009

Cs A2 5.751 5.991 6.182 6.207 6.241 6.039 0.006

Ca A1 5.328 5.446 5.474 5.521 5.524 5.553 0.011

Sr A1 5.782 5.901 5.966 6.004 5.988 6.045 0.008

Ba A2 4.747 4.866 4.957 5.022 4.973 4.995 0.005

Al A1 3.985 4.013 4.004 4.037 4.009 4.020 0.012

Pb A1 4.874 4.926 4.939 5.035 4.984 4.902 0.003

Cu A1 3.517 3.562 3.565 3.628 3.575 3.595 0.007

Rh A1 3.755 3.780 3.773 3.829 3.803 3.793 0.005

Pd A1 3.836 3.876 3.872 3.942 3.903 3.875 0.004

Ag A1 4.010 4.053 4.054 4.147 4.086 4.056 0.005

C A4 3.532 3.553 3.551 3.569 3.568 3.543 0.023

Si A4 5.403 5.431 5.431 5.466 5.451 5.416 0.014

SiC B3 4.329 4.356 4.350 4.377 4.366 4.342 0.018

Ge A4 5.623 5.675 5.678 5.759 5.721 5.640 0.012

GaAs B3 5.605 5.661 5.672 5.746 5.713 5.638 0.010

NaCl B1 5.465 5.602 5.686 5.700 5.703 5.565 0.029

NaF B1 4.502 4.629 4.686 4.705 4.705 4.579 0.030

LiCl B1 4.968 5.058 5.119 5.142 5.094 5.056 0.032

LiF B1 3.913 4.003 4.039 4.062 4.027 3.964 0.046

MgO B1 4.168 4.223 4.232 4.255 4.237 4.184 0.019
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solids �1.2 and 0.5% for LiF and NaCl, respectively�. The
neglect of this effect can be justified for benchmarking LDA
and PBE functionals, where the average errors �−1.3% and
+1.6%, respectively, cf. Table I� are considerably larger than
the errors arising from the neglect of ZPAE. As the zero-
point anharmonic motion always expands the lattice, the ne-
glect of it introduces a systematic bias in the appraisal of the
functionals. The average expansion is +0.015 Å �
0.35%�
for the ZPAE values shown in Table II. The uncorrected ex-
perimental results are closer to PBE than LDA, while the
ZPAE-corrected experimental values are smaller and thus
move closer to LDA values. Table I also shows that recent
functionals developed for solids are considerably closer to
the corrected experimental values; the mean errors �ME� in
Table I are about 0.01 Å �
0.25%� for the PBEsol and
second-order generalized gradient approximation �SOGGA�
�Ref. 15� functionals. Hence, neglecting the ZPAE biases the
rating of such functionals. Note that in the original SOGGA
paper15 the ZPAE corrections for nonmetallic solids are in-
correctly given. Consequently our statistics for SOGGA in
Table I is different from the published statistics,15 and the
agreement between SOGGA and the experiment is slightly
worse here.

The good agreement between PBEsol and SOGGA is par-
ticularly interesting since the SOGGA exchange enhance-
ment factor was constructed from half-and-half mixing of
PBE and RPBE,62 using the exact gradient expansion coeffi-
cient ��=10 /81� in the same way as suggested for PBEsol.
The main difference between the exchange enhancement fac-
tors is that SOGGA enforces a smaller value for the large
gradient limit �tighter Lieb-Oxford bound�, 1.552 instead of
1.804 used in PBE and PBEsol. Figure 1 shows that the
SOGGA and PBEsol Fx�s� curves are very close to each
other for small gradients �s�2�. The SOGGA functional
uses the unchanged PBE correlation functional. Conse-
quently the origin of the PBEsol improvement over PBE in
lattice constants for solids is to be found in the modification
of the exchange functional. This is in agreement with the
explanation given in the original PBEsol paper.14

The AM05 exchange functional19 is based on the Airy gas
paradigm of Kohn and Mattsson.17 For small s, the AM05
and PBEsol exchange functionals are quite different �cf. Fig.
S1 of Ref. 14�: the PBEsol Fx�s� follows the exact gradient
expansion while the AM05 Fx�s� remains close to 1 if s�1�.
Figure 1 shows that for larger s the AM05 gradient enhance-
ment factor increases rapidly, crosses the PBE curve, and
finally rises at s about 5.2 above 1.804, the maximum value
that ensures satisfaction of the Lieb-Oxford bound for all
possible densities. Indeed, AM05 will violate this lower
bound on the exchange energy for any density in which s is
sufficiently large everywhere, which can be achieved by
starting with a suitable density n�r� for N�1 electrons and
scaling it down to n�r� /N so that s
N1/3 becomes almost
everywhere much greater than 5.2. For example, start with
the density of an N-electron crystal �N�1�, and then scale
down to a one-electron density that roughly resembles a
Bloch-orbital density. Note that the LAG functional18 be-
haves very similarly. Despite the difference in the exchange
enhancement functions �cf. Fig. 1�, the AM05 and PBEsol
functionals have very similar exchange-correlation enhance-
ment factors Fxc�s ,rs ,�=0� for rs=1 as demonstrated in Fig.
2 for the spin-unpolarized density, where rs is the Wigner-
Seitz radius and �= �n↑−n↓� /n is the relative spin polariza-
tion. For small s, the two functionals are quite similar for
electron densities around 1�rs�5 �typical of valence and

0.5 1.5
____

FIG. 2. �Color online� Exchange-correlation gradient enhance-
ment factors, Fxc�s ,rs ,�=0� vs the reduced density gradient s in the
range 0�s�2.2 for the generalized gradient approximations AM05
�dashed red� and PBEsol �solid blue� for rs=0,0.5,1 ,2 ,5. The
higher the curve, the larger the rs. rs denotes the Wigner-Seitz ra-
dius, and � denotes the relative spin polarization. In LDA
Fxc�s ,rs ,�=0�=Fxc�s=0,rs ,�=0�. The active electrons in most sol-
ids have 0.5� 
rs� 
5, and 0� 
s� 
2 �with 0� 
s� 
1 in
some solids�. The higher densities �smaller rs’s� present in the va-
lence and core-valence overlap regions are likely to be more impor-
tant for the lattice constant.

FIG. 1. �Color online� Exchange-only gradient enhancement
factors Fx�s� vs the reduced density gradient s in the range 0�s
�6 for the generalized gradient approximations PBE, PBEsol,
AM05, and SOGGA. In LDA, Fx�s�=Fx�s=0�=1.
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core-valence regions of solids�. However, for large s and rs
values, the two functionals behave quite differently. Figure 2
shows that the AM05 curves go below the PBEsol curves for
s�1 and 2�rs�5, and after going through a minimum they
cross the PBEsol curves and increase more steeply than the
PBEsol curves for large s. The difference between the AM05
and PBEsol curves increases with s �and with rs for rs�2�.

Inspection of the PBE results in Table I shows that the
BAND/LCAO and VASP/PAW results agree quite well with
each other. The calculated lattice constants depend on the
choice of the GAUSSIAN basis set. Application of the GTO1
or GTO2 basis sets gives 0.010–0.012 Å longer lattice con-
stants on average, compared to converged BAND/LCAO and
VASP/PAW results. Consequently nonconverged GAUSSIAN

basis sets might slightly bias the estimation of the perfor-
mance of the functionals that reach a high accuracy such as
PBEsol and SOGGA �cf. mean error ME�0.010 Å, and
mean absolute error MAE�0.023 Å in Table I�. Even the
estimation of the performance of the TPSS in Ref. 13 might
be biased by 0.01 Å. The TPSS BAND/LCAO results agree
better with experiment than TPSS/GTO1 results �cf. MEs
=0.048 and 0.058 Å, and MAEs=0.052 and 0.059 Å, re-
spectively; for the BAND results see Table I�. Comparison
with the VASP or BAND results shows that the more expensive
GTO2 basis set is somewhat better for diamond and Si than
the GTO1 basis set, but no clear improvement can be ob-
served for SiC, Ge, GaAs, and MgO. An earlier BAND study
shows that the inclusion of scalar relativistic effects shortens

the lattice constants of Cu �−1%� and Ag �−2.4%�.51 The
all-electron �nonrelativistic� GTO calculations agree well
with the relativistic BAND results for Cu due to the GTO1
basis set error. The relativistic effective core potential �ECP�
basis sets used for Rh, Pd, and Ag in Refs. 14 and 38 give
mixed results: good agreement with BAND for Pd, shorter
lattice constant for Ag �−0.02 Å�, and longer for Rh
�+0.04 Å�.

The mean relative error �MRE� of the PBEsol results in
Table I �MRE�0.2%� lies between those of PBE �MRE
�1.4%� and LDA �MRE�−1.3%�. The SOGGA/GTO1 re-
sults are also excellent, but a small GTO1 basis set error is
included in these results. Removing this small error �e.g., by
BAND� will not deteriorate the SOGGA statistics for these 18
solids. Note that in the evaluation of the SOGGA
functional15 two small errors, the basis set error and the ten
incorrect experimental references compensate each other.
The TPSS BAND/LCAO results �MRE�1.0%� in Table I
show some improvement compared to PBE results, but they
do not reach the quality of the PBEsol results.

The recent AM05 functional performs well too, but the
lattice constants are slightly too long on average and thus
less accurate compared to PBEsol or SOGGA results. Figure
3 shows the individual relative errors �%� of the lattice con-
stants calculated with PBEsol, AM05, and SOGGA com-
pared to the ZPAE-corrected experimental lattice constants at
0 K. The larger errors of the AM05 functional for bulk K,
NaCl and NaF contribute to the larger statistical error of the

FIG. 3. �Color online� Deviations �%� between calculated ground state and corrected experimental lattice constants ��calc.-expt.�/expt.
100%� of the 18 test solids. The PBEsol/GTO2 results are from Ref. 14. The PBEsol/BAND and VASP results are from the present work and
calculated with the SJEOS. The Murnaghan EOS yields identical results within the reported number of decimal places. The AM05/VASP

results are from Ref. 48, except K and Ge �calculated for this work�. The SOGGA/GTO1 results are from Ref. 15. Experimental low-
temperature �5–50 K� lattice constants are from Ref. 56 �Li�, Ref. 57 �Na and K�, Ref. 58 �Al, Cu, Rh, Pd, and Ag�, and Ref. 59 �NaCl�. The
rest are based on room temperature values from Ref. 60 �C, Si, SiC, Ge, GaAs NaF, LiF, and MgO� and Ref. 57 �LiCl�, corrected to the T=0
limit using the thermal expansion from Ref. 58. An estimate of the zero-point anharmonic expansion is subtracted out from the experimental
values �cf. Table II�.

ASSESSING THE PERFORMANCE OF RECENT DENSITY… PHYSICAL REVIEW B 79, 155107 �2009�

155107-7



AM05 functional for this test set comprising 18 solids. The
AM05 lattice constants are VASP/PAW values taken from
Ref. 48, except for K and Ge, which were computed for this
work. According to the mean absolute relative errors
�MARE� in Table I, the order of accuracy is PBEsol
�SOGGA�AM05�TPSS�PBE�LDA.

The systematic deviation between AM05 and PBEsol and
the performance of the TPSS functional will be discussed on
a larger test set, in support of statements made by some of us
in Ref. 32. Table II shows the Strukturbericht symbols, the
LDA, PBEsol, and PBE lattice constants for 24 solids calcu-
lated with the BAND/LCAO program, together with the
ZPAE-corrected experimental values �Å� and the ZPAE cor-
rections �Å�. Comparison of PBEsol/BAND results with the
EMTO results22 shows that this latter method results in too
long lattice constants for Cs, Ca, and Sr; the difference is
0.01–0.02 Å. Detailed comparison shows that the difference
between AM05 and PBEsol lattice constants increases sys-
tematically with increasing atomic number for alkali and
alkaline-earth metals. For Rb and Cs the AM05 lattice con-
stants are quite far from the PBEsol results �larger by 0.10
and 0.15 Å, respectively�, and agree well with the PBE lat-
tice constants.22 Similar effects can be observed for Sr and
Ba bulk metals.22 As discussed earlier �cf. Fig. 3�, PBEsol
outperforms AM05 for ionic insulators and heavier alkali
metals while AM05 outperforms PBEsol for alkaline-earth
metals. In this sense the recent observation31 that AM05 and
PBEsol yield identical results for a wide range of solids is
not valid for the heavier alkali and alkaline-earth metals and
ionic insulators.

Inspection of the results in Table II shows that the TPSS
functional performs well for Li, Na, Ca, Sr, Ba, Al, Cu, and
Rh, and it gives too long lattice constants for K, Rb, and Cs,
making the TPSS results worse than PBE for these latter
metals. Interestingly, for Ca, Sr, and Ba the TPSS results are
quite good �MARE=0.3%� and agree better with the PBE
�MARE=0.4%� and AM05 �MARE=1%� results than with
the too short PBEsol results �MARE=2%�, while for Al, Cu,
and Rh the TPSS results �MARE=0.3%� agree well with the
PBEsol results �MARE=0.3%�. The AM05 and PBE lattice
constants are too long for these solids; MARE=0.5% and
0.9%, respectively. This shows the potential of the meta-
GGA to alter trends, as for both groups of solids its MARE
remains around 0.3%.

Table III shows the maximal values of the reduced ex-
change gradient s calculated for our solids from BAND elec-
tron densities. The values show that Li, the ionic solids, Ge
and GaAs have the largest maximal s �2.1–2.2�, while this
value is considerably smaller for the other solids �0.8�s
�1.7�. This is the explanation for the surprising similar per-
formance of the AM05 and PBEsol functionals for many
metals, and the larger differences for ionic solids, where the
large s and rs region is more important than in metals.

Fuchs et al.63 presented convincing evidence that two
density functionals that reduce to LDA for a uniform density
can produce different lattice constants largely through their
differences in the region of core-valence overlap, and not in
the pure valence region. This conclusion also seems sup-
ported by the analysis of Ruban and Abrikosov.64 Figure 2 of
Ref. 65 plots s and rs vs distance from the nucleus for the

nitrogen atom, showing that rs�1 or less and 0.3�s�1.3 in
the core-valence overlap region. Our Fig. 2 shows an espe-
cially close agreement between AM05 and PBEsol for all s at
rs�1, and reasonable agreement for s�1 at rs away from 0.
These features might explain the rough agreement of AM05
and PBEsol lattice constants for most solids, and their close
agreement for solids with s�1 everywhere. We suspect that
the maximum s values for solids in our Table III tend to
occur in the core-valence overlap region. These issues de-
serve further study.

The results in Table IV show that the performance of the
functionals is different for metallic and nonmetallic solids
compared to thermally and ZPAE-corrected experimental re-
sults. Note that Refs. 22 and 41 use partially or uncorrected
room-temperature experimental lattice constants as reference
values. In Table IV we also show the performance of the
same functionals compared to the same experimental values
used in Refs. 22 and 41.

For the 14 metals in this test set, the PBEsol functional is
the best performer, giving slightly shorter lattice constants
than the fully corrected experimental values �MRE=−0.7%,
MARE=0.8%�. PBE performs quite well and gives slightly
too long lattice constants by about 1% �MARE=1.24%�. The

TABLE III. Maximal values of the reduced gradient, s �a.u.� in
various solids calculated by BAND/LCAO. A region of radius 0.2
bohr/Z around the nucleus, where relativistic effects might be im-
portant, has been excluded.

Solid Max. s

Li 2.1

Na 1.9

K 1.7

Rb 1.6

Cs 1.5

Ca 1.3

Sr 1.3

Ba 1.1

Al 1.4

Pba 0.8

Cu 1.0

Rh 0.8

Pd 0.8

Ag 0.9

C 1.4

Si 1.4

SiC 1.5

Ge 2.2

GaAs 2.2

NaCl 2.1

NaF 2.1

LiCl 2.2

LiF 1.9

MgO 1.6

aLargest significant value �the integration weight is larger than
10−3�.

CSONKA et al. PHYSICAL REVIEW B 79, 155107 �2009�

155107-8



LDA MRE is the largest, −2.7%. Our results for the main-
group metals can be compared to the results in Table II of
Ropo et al.22 for the same metals. As noted earlier, the cal-
culated EMTO lattice constants are in reasonably good
agreement for LDA, PBEsol, and PBE with our calculated
lattice constants in Table II. However, for this test set Ropo
et al. conclude that PBE is the best performer. The origin of
the different conclusion is the neglect of the ZPAE for all
metals and the use of room-temperature experimental lattice
constants for Al, Pb, Cu, Rh, Pd, and Ag �cf. the good agree-
ment between PBE and partially or uncorrected room tem-
perature experimental results in Table IV�. According to the
MAREs for corrected experimental lattice constants in Table
IV, the order of accuracy is PBEsol�TPSS�PBE�LDA
for metals.

For the ten nonmetals in this test set, the PBEsol and LDA
perform almost equally well, giving opposite +0.6 and
−0.7% MREs, respectively, while PBE gives MRE
� +1.8%. The LDA performs very well for the lattice con-
stants of our nonmetallic solids, but studies that ignore the
ZPAE might easily draw wrong conclusions. The results in
Table IV show that ignoring ZPAE effects shifts the MRE by
0.52% �the ME by about 0.02 Å� away from the LDA. Note
that PBEsol gives the same but opposite error for metals and
nonmetals, and this contributes to its good performance for
the whole test set �cf. Tables II and IV�. According to the
MAREs for corrected experimental lattice constants in Table
IV, the order of accuracy is PBEsol�LDA�TPSS�PBE
for nonmetals.

V. BULK MODULI

Temperature and phonon effects can modify the bulk
modulus up to 20% for Li �Ref. 66� and 5%–8% for the other
metals studied here. The temperature effects are about 5%–
15%, the ZPPEs are about 2% on average �span 1%–5%
range�. The experimental error is up to 5%–10%.

Table V shows the calculated and experimental38,55,60 bulk
moduli �GPa� for our extended set of 24 solids. The experi-
mental references used for Table V are corrected for zero
temperature but do not include ZPPEs. However, for main-
group metals, the estimated ZPPEs are given in Ref. 55 �cf.
Table V and Eq. S12�, and we show them in percentage. The
ZPPEs make the corrected experimental bulk moduli 2%
stiffer on average. As bulk moduli of these solids span a
large, more than 2-order-of-magnitude �2–440 GPa� range,
we also show the mean relative error �MRE %� and the mean
absolute relative error �MARE %�. Investigation of the re-
sults in Table V shows that the LDA overestimation of the
bulk moduli is about 15% �too stiff� and the PBE underesti-
mation is about 9% �too soft, but considerable improvement
over LDA�. The PBEsol performance is excellent, giving
about a 1% overestimation. The relevant AM05/VASP

results48 are on the PBE side �too soft� and quite close to the
experimental results, while PBEsol is on the LDA side and
again close to the experimental results. The ZPPE correc-
tions would shift the corrected experimental values in the
direction of LDA and PBEsol and worsen the agreement be-
tween experiment and AM05 or PBE results. Gaudoin and

TABLE IV. Statistical data, mean error, mean absolute error, mean relative error �MRE %�, and mean absolute relative error �MARE %�,
for lattice constants �Å� of the 14 metals and 10 nonmetals in the test set of 24 solids calculated with BAND/LCAO from the SJEOS.
Comparisons to thermally and ZPAE-corrected experimental results �left� and to partially or uncorrected room temperature experimental
values used in Refs. 22 and 41 �right�. The best agreement with the experiment are in boldface. For the AM05 values of Table II, compared
to corrected experimental results, the total ME and MAE are 0.025 and 0.048 Å, respectively. The AM05 functional performs better for
metals �MAE=0.045 Å� than for nonmetals �MAE=0.052 Å�.

Solid

Compared to corrected experimental values Compared to experimental values used in Refs. 22 and 41

LDA PBEsol PBE TPSS LDA PBEsol PBE TPSS

Metals �14�
ME �Å� −0.136 −0.039 0.046 0.039 −0.151 −0.054 0.030 0.024

MAE �Å� 0.136 0.042 0.060 0.060 0.151 0.058 0.055 0.060

MRE �%� −2.71 −0.76 0.95 0.74 −3.04 −1.10 0.61 0.39

MAREa �%� 2.71 0.83 1.24 1.15 3.04 1.21 1.15 1.19

Nonmetals �10�
ME �Å� −0.042 0.026 0.085 0.066 −0.067 0.001 0.060 0.040

MAE �Å� 0.042 0.026 0.085 0.066 0.067 0.001 0.060 0.043

MRE �%� −0.86 0.56 1.76 1.35 −1.41 0.00 1.19 0.79

MAREa �%� 0.86 0.56 1.76 1.35 1.41 0.31 1.19 0.84

Total �24�
ME �Å� −0.097 −0.012 0.062 0.050 −0.116 −0.031 0.043 0.031

MAE �Å� 0.097 0.036 0.070 0.062 0.116 0.040 0.057 0.053

MRE �%� −1.94 −0.21 1.29 0.99 −2.36 −0.64 0.85 0.56

MAREa �%� 1.94 0.72 1.45 1.23 2.36 0.84 1.17 1.04

a�calculated-experimental�/experimental 100%.
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Foulkes66 give B0 values after removal of finite temperature
and zero-point effects for Li, Al, and Pb: 14.5, 81.3, and 47.3
GPa, respectively. These values agree well with our PBEsol
values in Table V.

Using GTO1 basis set makes the solids on average stiffer
by 2% for LDA and PBE compared to BAND or earlier VASP

results.48 Thus the GTO1 results in Ref. 38 might contain a
2%–3% random basis set error. The 0.3% average deviation
between PBEsol/BAND and VASP bulk moduli shows the pre-
cision of our current calculations. The BAND and VASP �not
shown� agree well with each other for LDA, PBE, and
PBEsol bulk moduli. We plan to include more 3d, 4d, and 5d
metals, and other nonmetallic solids in our test set. However,

the lack of good experimental bulk moduli at 0 K limits our
effort to expand the test set.

The large mean absolute relative errors of the bulk modu-
lus �15% for LDA, 9% for PBE� shown in Table V are re-
duced to 5% by PBEsol. One can alternatively achieve this
level of accuracy by combining LDA or PBE equation-of-
state parameters with the experimental value of the lattice
constant; see Eq. �21� and Table IV of Ref. 38.

VI. COHESIVE ENERGIES

Table VI lists the cohesive energies �eV/atom� obtained
for 18 solids from PBE and PBEsol functionals using differ-

TABLE V. Bulk moduli �GPa�, zero-point phonon effects �ZPPE %�, and statistical data of 24 test solids
calculated with BAND/LCAO from the SJEOS. The experimental data include thermal corrections but not the
ZPPE, as ZPPE values are not available for most of the solids. The available ZPPE corrections are taken from
Ref. 55. The best theoretical values are in boldface.

Solid LDA PBEsol PBE Expt.
ZPPE
�%�

Li 15.2 13.8 13.8 13.3 4.5

Na 9.50 8.16 7.86 7.50 3.1

K 4.60 3.74 3.44 3.70 2.1

Rb 3.54 2.95 2.76 2.90 1.4

Cs 2.58 1.96 1.72 2.10 0.9

Ca 19.1 17.8 17.0 18.4 1.8

Sr 14.8 13.2 12.1 12.4 1.3

Ba 10.9 9.06 7.91 9.30 0.8

Al 83.8 82.6 78.0 79.4 3.3

Pb 54.3 48.1 37.1 46.8 1.1

Cu 190 166 142 142

Rh 320 296 260 269

Pd 227 205 169 195

Ag 139 119 91 109

C 467 450 434 443

Si 96.8 94.2 89.2 99.2

SiC 225 218 210 225

Ge 72.6 68.1 59.7 75.8

GaAs 74.2 69.1 61.3 75.6

NaCl 32.4 25.8 23.6 26.6

NaF 61.2 48.6 44.4 51.4

LiCl 40.8 35.2 32.1 35.4

LiF 86.5 73.1 67.1 69.8

MgO 172 157 149 165

MEa �GPa� 10.2 2.0 −6.8

MAEb �GPa� 10.8 5.2 6.9

MREc �%� 14.6 0.9 −8.7

MAREd �%� 15.3 5.4 9.4

aMean error.
bMean absolute error.
cMean relative error; �calculated-experimental�/experimental 100%.
dMean absolute relative error.
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ent methods �GTO, VASP/PAW and BAND/LCAO�. In
GAUSSIAN, the basis functions used to describe core electrons
must be the same in the solid and in the atom, so that basis-
set limitations in the core will cancel out of the cohesive
energy. But converged energies for the valence electrons in a
solid can be achieved without the more diffuse basis func-
tions needed to converge the energy of the valence electrons
in a free atom or molecule. These more diffuse basis func-
tions can create computational problems38 for our solids
other than C, Si, SiC, Ge, and GaAs. With this in mind, we
have calculated cohesive energies from GAUSSIAN for those
other solids, using different GTO basis functions for the

atom �standard molecular basis sets� and for the valence
electrons in the solid �standard38,41 pruned versions thereof�,
and these cohesive energies are largely confirmed by those
from our BAND and VASP calculations.

Reference 38, using the same GTO basis sets for the solid
as for the free atom, was only able to report four cohesive
energies �C, Si, SiC, Ge�. Reference 38 was able to report
four more cohesive energies �NaCl, NaF, LiCl, and LiF�,
using different basis sets for the cation in the solid and for
the corresponding free atom �as we do�, but questioned
whether this could work for the metals. It was found that
PBE performs considerably better than LDA �serious

TABLE VI. Cohesive energies �eV/atom� of 18 selected solids at equilibrium. Experimental values are
based on zero-temperature enthalpies of formation of the crystals and gaseous atoms. The experimental
cohesive energies were corrected for zero-point vibration energy of the solids. The best theoretical values are
in boldface.

Solids

PBE PBE PBEsol PBEsol Expt.b Expt.

ZPVEcGTO2 VASPa GTO2 BAND +ZPVE Errorb

Li 1.61 1.61 1.68 1.67 1.668 0.010 0.033

Na 1.11 1.08 1.16 1.15 1.132 0.007 0.015

K 0.86 0.86 0.93 0.93 0.940 0.008 0.009

Al 3.38 3.43 3.76 3.81 3.437 0.042 0.041

MEd −0.05 −0.05 0.09 0.09

MAEe 0.05 0.05 0.10 0.10

Cu 3.40 3.48 3.91 4.05 3.524 0.012 0.034

Rh 5.58 5.72 6.53 6.65 5.784 0.030 0.034

Pd 3.70 3.71 4.43 4.43 3.918 0.028

Ag 2.50 2.52 3.06 3.08 2.972 0.008 0.022

MEd −0.26 −0.19 0.43 0.50

MAEe 0.26 0.19 0.43 0.50

C 7.74 7.71 8.29 8.27 7.583 0.005 0.216

Si 4.58 4.56 4.96 4.93 4.681 0.083 0.062

SiC 6.39 6.40 6.85 6.87 6.488 0.119

Ge 3.80 3.73 4.20 4.22 3.863 0.031 0.036

GaAs 3.22 3.15 3.60 3.61 3.393 0.040 0.043

MEd −0.06 −0.09 0.38 0.37

MAEe 0.12 0.14 0.38 0.37

NaCl 3.16 3.09 3.29 3.23 3.341 0.031

NaF 3.88 3.82 4.02 4.04 3.978 0.048

LiCl 3.40 3.36 3.56 3.53 3.591 0.041

LiF 4.36 4.33 4.51 4.56 4.471 0.071

MgO 4.97 5.01 5.30 5.31 5.271 0.050 0.092

MEd −0.18 −0.21 0.00 0.00

MAEe 0.18 0.21 0.04 0.07

TMEf −0.13 −0.14 0.22 0.24

TMAEg 0.15 0.15 0.23 0.26

aReference 42, except K and Ge. K and Ge were calculated for this work.
bReference 68.
cThe zero-point vibration energies are calculated from the Debye temperatures �D: ZPVE= �9 /8�kB�D.
dMean error.
eMean absolute error.
fTotal mean error.
gTotal mean absolute error.
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overbinding� or TPSS �underbinding�, but the small test set
of eight nonmetals was insufficient for establishing trends.38

A more complete study42 using VASP on a test set different
from but overlapping with our test set �with only K and Ge
missing� shows that PBE is better for cohesive energies than
HSE �Ref. 67� or PBEh.42 In Table VI we show the relevant
PBE VASP results from Ref. 42. Comparison of GTO2 and
VASP results shows good agreement, except for Cu and Rh.
Note that the GTO2 result for Cu is nonrelativistic. Similar
agreement between GTO2 and BAND results is shown in
Table VI for the PBEsol functional. Comparison of PBEsol
results in Table VI and Ref. 15 shows relatively large dis-
agreement for ionic solids �more than 0.1 eV�.

We collected the 0 K experimental results from Ref. 68
with the experimental errors where available. The experi-
mental cohesive energies were corrected by the zero-point
vibration energy �ZPVE� �Ref. 51� calculated from the De-
bye temperature �D,

ZPVE = �9/8�kB�D. �8�

The values in Table VI show that the ZPVE is frequently
comparable in magnitude to the experimental error. The re-
sults in Table VI show the general overbinding tendency of
PBEsol. PBE performs better than PBEsol except for ionic
solids where PBEsol shows an excellent performance.

Note that evaluation of the cohesive energy requires a
generalization of the density functional to a spin-density
functional ���0�, which was published for most functionals
but not for AM05 at the time this paper was written; how-
ever, see Refs. 69 and 70. BAND and VASP have a spherical,
spin-unpolarized reference atom, but we have used the real
atom in our cohesive energy calculations. The atomic correc-
tions, which turn the energy of the reference atom into that of
the real one, are available from the authors.

VII. CONCLUSIONS

We have shown that neglecting the thermal and zero-point
phonon effects might invalidate any comparison of experi-
ment and theory for lattice constants and bulk moduli. The
uncorrected experimental results are much closer to PBE
than LDA. For 24 solids in our test set, after correction of the
experimental data, PBE systematically overestimates the lat-
tice constants �by 1.3%� and underestimates the bulk moduli
�by 9%�, while the LDA results show larger and opposite
errors �1.9 and 15%, respectively�. Mean errors of recent
functionals developed for solids such as PBEsol are about
0.01 Å �
0.25%� for the lattice constants and 1% for the
bulk moduli. Hence, neglecting the effect of the zero-point
anharmonic expansion, +0.015 Å �
0.35%�, biases the
judgment about the performance of such functionals. Ne-
glecting the thermal expansion adds further bias �up to
1.4%�.

For the lattice constants of our ten nonmetals, PBEsol and
LDA perform almost equally well, giving opposite +0.6 and
−0.7% average relative errors, respectively. PBEsol gives the
similar but opposite average relative error for metals
�−0.7%� and nonmetals �0.6%�; this contributes to its good
performance for the whole test set of 24 solids. The PBE

functional shows poor performance for nonmetals and quite
good performance for metals where LDA fails.

The SOGGA functional uses a PBEsol-like exchange
functional for s�2 and the PBE correlation functional �not
fitted to the surface exchange-correlation energy of jellium,
unlike the correlation functionals of AM05 and PBEsol�. The
PBEsol and SOGGA lattice constants agree quite well. Con-
sequently the origin of the PBEsol improved lattice constants
for solids is to be found in the modification of the exchange
functional. This is in agreement with the explanation given in
our original PBEsol paper.14 Unlike AM05 lattice constants,
PBEsol and SOGGA lattice constants do not rely upon a
large error cancellation between exchange and correlation.

In Sec. IV, we have proposed an explanation, in terms of
the exchange-correlation enhancement factor Fxc�s ,rs�, for
the close similarity of AM05 and PBEsol lattice constants in
solids with s�1 everywhere, and the greater difference for
some solids with smax�1. Our explanation is consistent with
the importance of exchange-correlation nonlocality in the
core-valence overlap region.

The GAUSSIAN basis sets introduce a small
0.005–0.009 Å �0.2%� lattice constant lengthening that
slightly biases the assessment of the functionals, but does not
change the conclusion. Our previous conclusions based on
GAUSSIAN basis sets remain valid and supported by VASP and
BAND results. This shows that carefully selected GAUSSIAN

basis sets might be suitable for testing density functionals,
despite the serious problems of basis-set construction.

The GAUSSIAN basis sets introduce 2%–3% uncertainty
into the calculated bulk moduli, while the VASP and BAND

results agree within 0.3%. These errors are negligible com-
pared to the experimental errors �up to 10%� and the errors
arising from neglect of thermal �up to 15%� and zero-point
phonon effects �1%–3%, up to 4.5%�.

For cohesive energies of the 18 solids, PBEsol shows an
overbinding tendency �by 0.22 eV/atom on average�. PBE
slightly underbinds �by 0.13 eV/atom on average� and per-
forms better than PBEsol except for alkali metals and ionic
solids where PBEsol shows an excellent performance.

The results suggest that possibly no single GGA can de-
scribe with high accuracy the surface energies, lattice con-
stants, bulk moduli, and cohesive energies of solids at the
same time. The original PBE is biased toward a correct de-
scription of atoms and molecules, while PBEsol is biased
toward solids. Many GGA variants that do not build on the
exact gradient expansion for exchange might give accurate
lattice constants. Restoring the gradient expansion for ex-
change over a wide range of reduced density gradients �as in
PBEsol� might not be necessary for good lattice constants for
a limited class of solids, but is needed to construct more
universal approximations.32 The TPSS meta-GGA provides
an excellent description of atomic total energies, molecular
atomization energies, and jellium surface energies, but its
lattice constants might be improved by imposing this
PBEsol-like condition.

In short, the PBEsol GGA for solids works well for the
lattice constants and bulk moduli of typical nonmolecular
solids. An accurate lattice constant and bulk modulus may4

be accompanied by a good description of thermal effects. For
the open-shell 3d transition metals, PBE is better22,24 than
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PBEsol, but these solids are bonded in part by the highly
localized 3d orbitals to which the second-order gradient ex-
pansion of the exchange energy �on which PBEsol is based�
may not apply.22 Under sufficiently intense compression, all
solids �including the 3d metals� should be better described14

by PBEsol.
Since PBE is much better than PBEsol for the total ener-

gies of atoms, and for the atomization energies of molecules,
we expected that PBE would also be better for the cohesive
energies of solids. While this has been confirmed here in a
statistical sense, we also find unexplained special cases �the
alkali metals and the alkali halides, where the atoms have
one electron outside a closed shell or one electron missing
from a closed shell� where PBEsol cohesive energies are
excellent and much better than PBE. For a functional that
will be accurate over a much wider range of systems, we
intend to look beyond the GGA level to an improved meta-
GGA. A meta-GGA form is more flexible, and computation-
ally not much slower than a GGA, making it the natural
successor of LDA and GGA in applications.

Note added. After this paper was accepted, we learned of
another71 lattice-constant test of semilocal functionals, for 60
solids using the WIEN2K code, with results similar to ours.
The mean absolute deviation in angstrom of each column of

our Table II �excluding Cs, not studied in Ref. 71� from the
results of Ref. 71 is 0.005 �LDA�, 0.008 �PBEsol, AM05�,
0.009 �PBE�, 0.012 �TPSS�, and 0.003 �Expt.-ZPAE�. The
WIEN2K SOGGA results of Ref. 71 are also somewhat differ-
ent from the GTO1 results published in Ref. 15 for 18 solids
�with deviations due to the GAUSSIAN basis set error in the
range of −0.021– +0.035 Å, and mean absolute deviation
0.015 Å�, but the overall statistics for SOGGA lattice con-
stants remains good, close to the PBEsol statistics as we have
predicted in this paper.
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