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Abstract

We analyze the feasibility of extremely rapid estimation of correlation energy from the HF-SCF charge distribution in
closed-shell molecules. In Kristyan's previous work [Chem. Phys. 224 (1997) 33-51] a simple linear relationship using
atomic correlations was developed in order to calculate correlation energy of molecules. This method has been further
refined in this Letter. The proposed method is analyzed for 18 molecules and ions and the new results are compared to the
B3LYP, CCSD and G2 results. © 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

The efficient calculation of correlation energy
plays a central role in modern theoretical chemistry
[1-4]. The exact solution of the Schrodinger equa-
tion is provided by the full configuration interaction
(Cl) method for some lowest lying states, and the
approximate Hartree—Fock self-consistent field (HF—
SCF) for the ground state energy. The very accurate
full-Cl method is practica only for very small
molecules due to its high computing power demand
[4,5] and factorial scaling with the system size. The
HF-SCF calculations [4-8] for the ground state
reguire much less computing power and scale at best
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linearly with the system size. However, the inherent
approximations bear a systematic error in compari-
son to the accurate full-Cl method. The term ‘elec-
tron correlation energy’ (E,,) for the electronic
ground state is usually defined as the difference
between the exact non-relativistic full-Cl energy of
the system (E,(Cl)) and the HF—SCF basis set limit
energy (E,(HF—SCPF)):

Ecorr = EO(CI)_EO(HF_SCF) : (1)

By the variational property of the HF—SCF ap-
proximation Eg,, <O for systems with N> 2. The
HF-SCF method provides an excellent starting point,
which accounts for about 99% of the total energy of
the molecule. However, the neglect of correlations
between electrons (mean-field approximation), leads
to rather poor description in the chemical sense
because the energy of the chemical bonds is compa-
rable to that 1% error of the HF—SCF method. This
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is why the inclusion of the electron correlation is
critical for the accurate and quantitative evaluation
of molecular energies. Yet, HF—SCF program pack-
ages are much simpler to handle than CI program
packages, so correlation calculation methods are
sought which require much less computational de-
mands than the Cl, but reach CI accuracy.

According to Eq. (1) the electron correlation ef-
fects are a measure of the systematic errors that are
inherent in HF theory. However, one should keep in
mind that while HF theory is well-defined and unique
for closed-shell molecules, severa versions of HF
theory are used for open-shell molecules. Correlation
energy for an open-shell molecule is usually defined
with respect to unrestricted Hartree—Fock (UHF)
theory where the spatial orbitals are different for «
and B spins. However, some authors prefer to define
it with respect to restricted Hartree—Fock (RHF)
theory where the spatia orbitals for « and B spins
are identical. Sometimes, it may be convenient to
replace the HF approximation in the above definition
with another well-defined approximation such as a
multiconfiguration reference function. In the present
Letter we study only closed-shell molecules and use
RHF theory for such molecules.

Simple analysis of the nature of correlation en-
ergy (E,,,,) leads to a frequently used rule of thumb:
that correlation effects contribute about 23 kcal /mol
for a pair of electrons in a well-localized orbital (cf.
to the expected 1 kca /mol chemical accuracy of
guantum chemical calculations). Hartree—Fock cal-
culations with large basis sets show that correlation
effects contribute about 25 kcal /mol to the binding
energy in H,. For many pairs of electrons in close
proximity, correlation effects become very large. For
example, they contribute more than 100 kcal /mol to
the bond energy in N,. There exists a clear depen-
dence between the magnitude of the correlation en-
ergy and the number of electrons. In this sense the
electrons with antiparallel and parallel spins must be
clearly differentiated because the HF method pro-
vides a good description for the electrons with paral-
lel spins (Pauli exclusion) and poorer (average) de-
scription for the antiparallel spins. Although E,,
depends [9-11] mainly (quasi-linearly) on the num-
ber of electrons, N (more precisely on N — 1), the
considerably smaller dependence on the nuclear po-
tential, v(R,Z), must be considered in order to obtain

chemical accuracy (with (R,Z) defining the nuclear
frame). As a consequence, the HF—SCF method
itself is not accurate even for energy differences (e.g.
in the case of frequency or activation energy calcula-
tions), because this systematic error (E_,,) does not
cancel.

Some well-known, very expensive classica ap-
proximations for correlation energy are the second,
third or fourth order Maller—Plesset perturbation
methods (MP2, MP3 or MP4) [6-8,12], and the still
more expensive coupled cluster methods (CCSD, or
CCSD(T)) [8,13]. The applied basis set is dso a
source of various problems, as the MPx and CCSD
methods show a rather slow convergence with re-
spect to the basis set increase. Even divergence is not
uncommon. In this respect the HF—SCF method
shows a more advantageous behavior. The very poor
convergence and the O(n®) — O(n’) scaling [14] with
the basis set increase led to the development of the
so-called composed (or extrapolation) methods (e.g.
G2) [8,15]. Considerably faster dternatives for the
estimation of the correlation energy are the density
functional (DFT) methods. The recent correlation
functionals, e.g. Perdew—Wang and Lee-Y ang—Parr
(LYP) [16,17], or the hybrid adiabatic connection
methods (ACM) e.g. BSPW91 or B3LYP [18-22)),
and many other models [6—8,23—27], provide usually
rather good results, and show a basis set convergence
similar to HF-SCF method. However, it should be
noted that the DFT methods also introduce new
problems. There is ho simple way to improve the
results (cf. use of semi-empirica functionals), and
numerical instabilities might occur as well.

We used the GAUSSIAN 94 program [8], and
selected 6-311 + G(2d,p) as default basis set in dif-
ferent methods. We have performed HF-SCF, full
and frozen core CCSD(T), G2 and B3LYP calcula
tions. The natural population analysis (NPA) charges
[8] were calculated via the HF-SCF method using
the G2 geometries; the geometries were reoptimized
in the B3LYP caculations. For various estima
tions of the molecular correlation energy we use
the following notation: E,,(CCSD), E,(G2),
E.,(B3LYP), E,, (RECEP), while E,,, itself notes
the accurate complete-Cl value as defined in Eq. (1).
For atoms we note the number of electrons (N), and
atomic charge (Z) in the argument as well, eg.
E.(Cl, N, Z), and sometimes the spin states.
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2. Rapid estimation of correlation energy from
partial charges (RECEP) method

The RECEP method (introduced first in Ref. [11])
is a very remarkable estimation for correlation en-
ergy. It is based on the following idess:

Empirically, the correlation energy of any N elec-
tronic systems can be roughly approximated [9—11]
by the following quasi-linear relationship:

Ecorr:a(N_l) 1 (2)
where —0.035 > ahartree] > — 0.045.

The physical origin of N— 1 in Eq. (2) is that the
electron correlation increases nearly proportionally
by the number of N — 1 electrons around a selected
electron [11]. The CI results for atoms and positively
charged atomic ions (1 < N< Z < 18) and some A~
atomic anions in free space reported in Refs. [28-30]
fall within the limits given by Eq. (2). The B3LYP
results in Refs. [9—-11] for neutral and positively
charged closed-shell atoms show a similar agreement
with Eg. (2). However, the quasi-linear relationship
in Eg. (2) cannot reach the chemical accuracy (1
kcal /mol, about 0.0016 hartree/particle). This rough
approximation does not make a difference between
a and B spin electrons and does not deal with the
polarization of electron cloud in molecular bond. The
estimation of correlation energy for molecules by Eq.
(2) misses the (R,Z) nuclear frame dependence; thus
it adds a constant to the entire HF—SCF potential
surface. For this latter reason, this approximation is
certainly insufficient for the molecular hypersur-
faces.

The RECEP method can be constructed from the
basic idea that the electron correlation energy is
roughly proportional to the number of electrons. The
essence of the RECEP is the use of partial atomic
charges, an integrated atomic quantity to estimate the
number of electrons around the atoms. It is supposed
that the quasi-linear dependence of the correlation
energy on the (fractional) number of electrons is
conserved in the molecules. The E, (RECEP) is
caculated as follows: ‘par(A) denotes the partial
charge on atom A in the molecule consisting of M
atoms (A=1,23,...,M) in atomic units (i.,e. —1
for electron, etc.). The molecular charge, Q, is Sm-
ply Q=X a_1myZn— N=X a_;mpa(A), where
Z, is the nuclear charge on the A-th nucleus and N

is the total number of electrons. The N, is defined as
N, =Z, — par( A) and its ‘meaning’ is the electron
‘content’ around the nucleus A in the molecule. The
different partial charges will be discussed later. The
partial charges offer an amazing estimation for the
correlation energy, considerably better than Eq. (2)
[11]. The formula for RECEP to estimate the molecu
lar E,,, value is the following:

Ecorr(RECEP) = Z:(A= 1,M)Ecorr( NA'ZA) . (3)

In Eq. (3), N, is the electron content around atom
A, calculated from partia charge par( A). The N,
valuesin Eq. (3) are not necessarily integer numbers,
while the Z ,s are. The summation in Eg. (3) runs for
al atomsin the molecule. The two basic assumptions
of Eg. (3) can be summarized as follows: the correla-
tion energy is the sum of the atomic correlation
energies and the atomic correlation energies can be
estimated from the partial charges.

The proof of the first theorem is quite simple. The
gradient vector field analysis of the electron density
( p(r)) provides that the molecules can be cut apart
to virial atoms [31]. The zero flux surfaces of the
electron density give the borders for these viria
atoms and in these atomic volumes the virial theo-
rem is fulfilled. The total energy can be calculated
from the sum of the virial atomic energies. If we
introduce the p(r) from HF=SCF and full-Cl calcu-
lations and calculate the viria atomic energies re-
spectively, the difference will provide the atomic
correlation energies, thus the existence of such ener-
gies is proved for those cases. One technical diffi-
culty is that the full-Cl electron density is not gener-
aly known. Another more serious theoretical prob-
lem is that it is not impossible to imagine examples
that contain domains without nuclei, thus assigning
electrons to interatomic volumes; this warns us that
the above-mentioned procedure is not always appli-
cable. However, it is applicable for most of the
known organic molecules and interesting results
would probably arise from such kind of studies for
atomic correlation energies in various molecules.

The proof of the second assumption is very diffi-
cult and we shall use it as a work hypothesis. This
assumption is the extension of the N dependence of
the atomic correlation energy for the non-integer
partial charges. The essential problem: what is the
definition of partial charges? The reader must be
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aware of the fact that partial charges are mathemati-
cal constructions that may help chemists to establish
empirical rules. Indeed, the partial charges might
differ substantially depending on the mathematical
formula. Different methods contradict frequently each
other or lead to ‘ unphysical’ numbersin the so-called
difficult cases. We recall here only four atomic
charge definitions. First we mention the widely used
Mulliken charges [2,8]. The deficiencies of this
method are well-known: for example the Mulliken
charges are oscillating with respect to the basis set
increase and do not show convergent behavior. The
charges derived from the electrostatic potential (ESP)
[7,32] and from natural population analysis (NPA)
[8,33] show considerably more stability with respect
the increase of the basis set. Finally we mention the
charges derived from Bader's population analysis
[31]. This latter definition of partial charges is de-
rived directly from the integration of p(r) in the
domains of virial atoms. While the derivation of the
charges is well-defined in the theoretical sense, the
derivation of such charges might suffer from serious
numerical instabilities, and as mentioned above, there
exist examples where charges are assigned to spatial
domains without nuclei. We also note that Bader's
population analysis leads (for example) to negative
charges on hydrogen atoms of hydrocarbons while
the NPA or ESP charges give approximately the
same positive values on these hydrogen atoms — and
in this way they can refer e.g. about dipol moments.
We aso note that the shapes of virial atoms in
molecules are frequently quite different from the
known spherical symmetry of free atoms in free
space.

The use of the HF-SCF p(r) calculated with a
moderate basis set (e.g. 6-31G(d)) can be justified
readily. For example, introducing HF—SCF p(r) into
a correlation energy functional (e.g. LYP) provides
more than sufficiently adequate correlation energy
[9,10,23]. Moreover, the value of E_, (LYP) change
only a little if we introduce HF—SCF limit electron
density. Similar observations have been made for the
LSDA electron density [18-23], which is success-
fully used for correlation energy calculations in gra-
dient corrected functionals. This observation origi-
nates in the fact that the E., is an integrated
quantity with respect to the p(r); thus more accurate

electron density causes little change in the E_, (the

one-electron density integrates to the number of elec-
trons) [9,10].

The next question is how to select the values for
the E,(N,,Z,) terms in Eqg. (3). These terms can
be calculated from accurate Cl calculations compar-
ing the correlation energy of the cation, neutral atom
and anion, because in covalent bonds (for example
the NPA) partial charges are generally between —1
and +1 in a neutra molecule. The Cl data for
integer (N,,Z,) pairs can be found in Refs. [28-30].
For the non-integer N, values linear interpolation
[11] might provide a reasonable correlation energy
value. Probably the linear interpolation could be
replaced by an interpolating function; however, this
question will be investigated in future papers. It
should be noted that these CI values are not the best
choice for Eq. (3). (cf. appendix of Ref. [11]). The
reason for this is the following: the atoms change
their spin state in molecules, using the open-shell
high spin multiplett correlation energies which would
provide some bias. For example, in case of CH ,, the
partial charge on C is between 0 and —1, i.e. the N,
for the C atom is between 6 and 7. The accurate Cl
calculations in Refs. [28—30] provide the correlation
energies for high spin states, i.e. E,,(Cl, N,=6,
Z, =6, triplet, i.e. 1s*2s?2p,2p,) and E_,,(Cl, N,
=7, Z, =6, quartet, i.e. 152252V2px2py2pz) values
for a linear interpolation. However, in a closed-shell
(at equilibrium or close to equilibrium) methane
there is no unpaired electron around the carbon
atom; the molecule is singlet. As was mentioned
before, the correlation energy is very sensitive to
spin pairing effects because the opposite spin elec-
trons have different correlation energy than the paral-
lel spin electrons. For example the exact Cl correla
tion energy changes only by —3 millihartrees (mh)
between He and Li and it changes by a considerably
larger extent between Li and Be (—49 mh) as the
spin pairing occurs (cf. Fig. 1). The spin pairing
effect can be easily followed on Fig. 1.

Thus instead of using the correlation energy of
high spin atomic states we propose using the energy
of the excited or low spin states, eg. E.,(Cl,
N, =6, Z, = 6, singlet, i.e. 1s°2s?2p?) and E_,,,(Cl,
N,=6, Z,=7, doublet, i.e. 1s°25°2p52p,). (It is
seemingly contradictory to use excited state parame-
ters — i.e. correlation of low spin atomic states — in
approximating ground state molecules with Eq. (3).
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Fig. 1. The exact correlation energy differences between the
neighboring elements going from left to right in the first row of
the periodic table (for example Li shows the correlation energy
difference between He and Li, Be shows the correlation energy
difference between Li and Be, etc.). The plot is based on footnote
b values of Table 1. This chart shows the important spin pairing
effect in correlation energy (e.g. the pairing in 2s shell in Be, and
in 2p shell from the oxygen atom (cf. Hund' s rule) is manifesting).

But we recal Eq. (2) again, st. the number of
electrons counts in the main event, and that in
closed-shell molecules at ground state the spin pair-
ing is maximal. We can also analogously mention
that the CI method is superior to the HF—SCF method
in approximating ground state E, value, because
‘Slaterian excited states' are dso involved [2]. And
after all, our computational experience [11] strongly
suggests that low spin atomic E,,(N,,Z,) values
give better results via Eq. (3) than high spin values.)
This method we used in this Letter and was used in
Ref. [11]. Correlation energies were calculated for
the first row atoms and ions, forcing them to be in
singlet or doublet states — where necessary, because
accurate Cl calculations of this kind are not avai-
lable yet. (For B3LYP correlation energies the
Ecorr(B3LYP) = [ E,(HF-SCF and B3) + E,,(LYP)]

corr

— E,(HF-SCF) definition was used [11]. %) We

2The E,,(LYP) DFT functional [16,17] is proposed for
Kohn—Sham orbitals, not for Slaterian orbitals, i.e. not for approx-
imating Eg,, in Eg. (1). But interestingly, if E,(LYP) is used
simply for Eq. (1), it gives reasonable result (SK). This was not
emphasized enough in Refs. [9,10] when it was compared to
Eo(MP2), athough was recognized; Refs. [9,10] state only that
Eorr(LYP) is much less sensitive for increasing basis set than e.g.
Eo(HF-SCP).

compared the high spin and low spin B3LY P correla
tion energies and obtained a correction factor for 6, 7
and 8 electronic systems: for 6, 7, and 8 electronic
systems the correlation energy changes approxi-
mately by —0.019, —0.026, and —0.026 hartree,
respectively. The exact Cl values were corrected
with these values for the 6, 7, and 8 electronic
systems shown in Table 1 (footnote c). Table 1 also
shows the corresponding low spin B3LYP atomic
correlation energies. Similar values can be calculated
for the whole periodic system, and other methods of
correlation energy calculation can be used instead of
full-Cl or B3LYP (e.g. CCSD(T)). In this Letter we
test two sets of atomic correlation energy values:
RECEP-c will note the calculation for estimating
molecular correlation energies calculated by Eq. (3)
using NPA [8] charges and corrected ClI atomic
correlation energies for Eg,(N,, Z,), the values
under footnote c in Table 1, and RECEP-d will note
the calculation if values under footnote d in Table 1
are used for E_(N,, Z,) instead. Our experience is
that using different correlation calculations for atomic
Eor(Na, Z,) causes only secondary effect in Eq. (3)
(mainly for energy differences) due to the fact that
the sum of partial charges is always exactly the
molecular charge itself.

Further refined atomic correlation energies,
E.or(Na,Z,, singlet) values (or such fictitious sin-
glets as those for a neutral nitrogen atom [11], where
singlet does not exist in atomic state, only doublet or
quartet) could be obtained from known correlation
energies of alarger set of smaller molecules (e.g. the
molecule set used in G2 method) by a fit of Eq. (3)
for its Eg,(N,,Z,, singlet) parameters; and these
fitted parameters could be used in the same way as
(for example) the molecular mechanic type calcula-
tions use their force constants, etc. Clearly, these
fitted E.,(N,,Z,, singlet) values, like the values
under footnote ¢ in Table 1, are no longer individual
atomic parameters. These are atomic parameters in
molecular bond, however; these E,,(N,,Z,) values
are very close to atomic singlet correlation energy
values. Furthermore, it may eliminate the dilemma of
the use of UHF or RHF corrélation energy. On the
other hand, the values under footnotes b and d in
Table 1 are atomic parameters in free space.

The hydrogen atoms require special attention be-
cause their partial charges fall frequently between O
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Table 1
Atomic correlation energies (hartree) to use in Eq. (3)
Atom?P N z Corrected exact® B3LYP!
H 2 1 —0.0395 —0.0432
He 2 2 —0.0420 —0.0531
Li 2 3 —0.0435 —0.0491
3 3 —0.0453 —0.0593
Be 2 4 —0.0443 —0.0425
3 4 —0.0474 —0.0601
4 4 —0.0943 —0.0994
B 4 5 —-0.1113 —0.1060
5 5 —0.1249 —0.1316
6 5 —0.1640 —0.1765
C 5 6 —0.1388 —0.1400
6 6 —-0.1754 —0.1911
7 6 —0.2087 —0.2258
8 6 —0.2839 —0.2883
N 6 7 —0.1856 —0.2005
7 7 —0.2143 —0.2373
8 7 —0.2877 —0.3035
9 7 —-0.3314 —0.3622
(0] 7 8 —0.2202 —0.2445
8 8 —0.2839 —0.3079
9 8 —0.3314 —0.3619
10 8 —0.4080 —0.4513
F 9 9 —0.3245 —0.3599
10 9 —0.3995 —0.4430
Ne 10 10 —0.3905 —0.4338

#N: number of electrons. Z: nuclear charge.

®Cl correlation energies for high spin ground states can be found in Refs. [28—30].

“Corrected (or optimized) Cl correlation energies: — 0.019 hartree correction for 6 electronic systems, —0.026 hartree correction for 7 and 8
electronic systems with respect to footnote b (RHF) values. These values no longer refer to the individual atomic ground states in free space;
we suggest they be applied to Eq. (3) for E,(N,,Z,) to estimate molecular correlation energies. The calculated molecular correlation
energies in this way are noted as RECEP-c in the text. These atomic parameters are probably close to the low spin state Cl values, not yet
available in the literature.

datomic correlation energies for singlet or doublet (not necessarily ground state) systems calculated as a difference of B3LYP/6-311 +
G(3df,2pd) and HF /6-311 + G(3df,2pd) energies. (i.e. atomic spin states are as low as possible, e.g. the carbon is in 1s?2s?2p?2 singlet low
spin state, etc.) These values are also suggested for use in Eq. (3) for Eg,(N,,Z,) to estimate molecular correlation energies. The calculated
molecular correlation energies in this way are noted as RECEP-d in the text.

91N case of C, N and O atoms, seemingly A2 atomic anions are listed when N = Z + 2, however, these do not exist in gas phase in free
space [11], although ab initio packages [8] can calculate their correlation energies. Indeed, these values are necessary in the calculation e.g.
for some molecules listed in Tables 2 and 3. One should take these values as parameters for Eq. (3) instead as correlation energies.

and 1.0. In Ref. [11] the E_,(0< N, < 1.0, Z,=1)

corr

late the correlation energy for H atoms as follows:

=0 was used in Eg. (3) for these cases, and for
1<N, <2 the E,,(N,=10, Z,=1)=0 and
E.n(Ny =20, Z,=1) <0 vaues were used (hy-
drogen atom and H~ anion, respectively) in the
linear interpolation for a negatively charged hydro-
gen atom in the molecule in question. In this way
Eq. (3) yielded zero correlation for the H, molecule,
which was essentially incorrect [11]. Here, we calcu-

for N, between 0 and 2, we linearly extrapolate the
E.../(N,,Z,) value from the two, E_ (N, =0, Z, =
1 =0and E,(B3LYP[8], N,=2, Z, =1, singlet)
= —0.043200 hartree values via the actual N, value
in the molecule. In this way Eq. (3) yields reasonable
correlation energy for the hydrogen molecule as
well. This method is important not only for the
hydrogen molecule, but for many other hydrogen-
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containing molecules, because in these molecules the
electrons are correlated around the hydrogen atoms
as well. This was also incorporated in RECEP-c and
RECEP-d calculations.

Eg. (3) deals neither with the spin distribution of
electrons (e.g. the LYP estimation does for the two
cases. open (N =odd) and closed (N = even) sys
tem) nor the polarization of electron cloud, but this
causes only little error. (More precisely, these prop-
erties pass somehow via the partial charges from the
HF-SCF calculation.) Eq. (3) is very likely not
‘variationa estimation’ for the correlation energy of
the molecules. However, because the number of
electrons around the atoms in a neutral molecule
does not differ ‘significantly’ from the atomic states
of the participating atoms, Eq. (3) should not be far
from a possible ‘ variation-like' behavior. With the
note on spin states above, Eg. (3) is suggested
primarily to calculate stationary points (minimums
and transition states) only [11], where the relative
spin states are described reasonably plausibly by the
Slater determinant formalism.

3. Test of RECEP estimation for correlation en-
ergy

First we selected several very important 10-elec-
tron systems, the protonated, neutral and deproto-
nated water and ammonia, and the methane and
deprotonated methane. In these systems the correla-
tion energy changes systematically depending on the
number of protons and lone pairs. These molecules

Table 2

are ideal to represent the influence of the nuclear
frame and lone pairs on the correlation energy while
the N =10, constant. We show the corresponding
HF/6-311 + G(2d,p)/ /MP2/6-31G(d) tota ener-
gies and various correlation energies in Table 2. All
calculations were done with the G2 optimized ge-
ometries except the B3LYP,/6-311 + G(2d,p) calcu-
lations, where the geometries were reoptimized. All
correlation calculations show the same tendencies:
for example the deprotonation of the neutral
molecules changes the G2 correlation energies by
—0.015 + 0.002 (hartree), the protonation of one of
the free lone pairs change the correlation energies by
about + 0.0055 (hartree). All methods (our RECEP
estimation included) agree quite well. Moreover, if
we go into the quantitative details we see an excel-
lent agreement between the RECEP-d and G2 corre-
lation energies (cf. Fig. 2). We note that the G2
method does not include the core correlation, thus
the RECEP-d correlation energies are considerably
more negative (by about 40 — 80 millihartrees, see
the 0.0734 statistical analysis constant on Fig. 2). In
order to show the approximate effect of the inclusion
of the core correlation we show the full and frozen
core CCSDT/6-311 + G(2d,p)//MP2/6-31G(d)
correlation energies in Table 2. Fig. 2 shows the
least square fit linear equation that transforms the
RECEP-d values to G2 correlation energy values
quantitatively; the R? (statistical correlation) is near
to unity (0.99). This is our main point, that the
estimation with Eqg. (3) reaches the known high
quality G2 estimation, and that while G2 is an
expensive calculation, Eq. (3) practically needs no

Molecular HF/6-311 + G(2d,p) total energies and correlation energies (hartree) calculated with various methods [8] for 10 electron
molecules (fc = frozen core). The geometries were optimized on MP2/6-31G(d) level. Using the HF/ /6-311 + G(2d,p) NPA charges [8],
the RECEP-c and -d correlation energy estimations were obtained by Eq. (3) with the corresponding values in Table 1

Molecules HF-SCF energy Correlation energy
CCSsD-fc CCSD-full G2 RECEP-c RECEP-d B3LYP

CH, —40.2102 —0.2049 —0.2259 —0.2433 —0.2646 —0.2868 —0.3247
CH3 —39.5195 —0.2140 —0.2346 —0.2558 —0.2870 —0.3043 —0.3380
NH} —56.5586 —0.2266 —0.2483 —0.2706 —0.3181 —0.3388 —0.3619
NH, —56.2151 —0.2312 —0.2526 —0.2766 —0.3282 —0.3478 —0.3687
NH3 —55.5423 —0.2425 —0.2634 —0.2933 —0.3397 —0.3657 —0.3841
OH% —76.3314 —0.2446 —0.2662 —0.2945 —0.3451 —0.3763 —0.4002
OH, —76.0533 —0.2483 —0.2697 —0.2998 —0.3492 —0.3812 —0.4062
OH™ — 75.4056 —0.2595 —0.2805 —0.3155 —-0.3718 —0.4080 —0.4222
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Fig. 2. Statistical data for RECEP-d vs. G2 correlation energies
(hartree) listed in Table 2.

CPU time. For larger systems (e.g. with 50 — 100
electrons), G2 may have problems with disc space,
CPU time or convergency, but until HF=SCF can be
performed, the RECEP can readily be used for corre-
lation calculation.

After the encouraging performance of the
presently proposed RECEP-d method we include
several more difficult cases and study the problems

Table 3

arising from this larger scope of molecules. Table 3
shows al the neutral molecules and ions selected for
the present study. Fig. 3 shows linear fits for the
RECEP and G2 relative correlation energies (in or-
der to decrease the effect of the missing core correla-
tion from the G2, we recalculated the correlation
energies relative to LiH as zero). In LiH the core
correlation is relatively important; thus it is expected
that the G2 method will provide moderate perfor-
mance. It can be observed that the LiH is rather off
the linear regression curve. It should also be noted
that the G2 method reproduces quite well the value
of heat of formation, AH® (298 K), for LiH. We
also note the case of the F~ ion. For this ion the
full-Cl calculations provide considerably more nega-
tive correlation energy than the G2 method, and
certainly the latter is in error. Our estimations of the
correlation energy for the fluoride containing
molecules are considerably more negative than the
G2 estimation. This can be partly explained by the
inclusion of the core correlation, but this is not
sufficient, because the difference between the G2
and full-Cl estimates for the correlation energy is
fairly large (cf. Table 3). As Curtiss and Pople noted
recently: ‘* Apparently there is some inherent prob-

Number of electrons (N), NPA charges® (a.u.) on the non-hydrogen atom(s) in the molecule, RECEP-c, RECEP-d, and G2 correlation
energies (hartreg). The molecules are listed in monotonic order with N, and if N is the same, with G2 correlation energy values

Molecule N NPA charge RECEP-c RECEP-d G2

LiH 4 0.812 —0.0799 —0.0901 —0.0343
BeH, 6 1.218 —0.1107 —0.1258 —0.0696
BH, 8 0.434 —0.1645 —0.1946 —0.1232
CH, 10 -0.711 —0.2646 —0.2868 —0.2433
CH3 10 -1.335 —0.2870 —0.3043 —0.2558
NH} 10 -0.824 —0.3181 —0.3388 —0.2706
NH, 10 -1.031 —0.3282 —0.3478 —0.2766
NH3 10 —1512 —0.3397 —0.3657 —0.2933
OH} 10 -0.777 —0.3451 —0.3763 —0.2945
HF 10 —0.564 —0.3755 —0.4162 —0.2951
OH, 10 —0.927 —0.3492 —0.3812 —0.2998
= 10 —1.000 —0.3995 —0.4430 —0.3150
OH~ 10 —1.362 —0.3718 —0.4080 —0.3155
LiF 12 —0.976 —0.4413 —0.4904 —0.3064
C,H, 14 -0.225 —0.3966 —0.4312 —0.3408
B,Hg 16 0.017 —0.3693 —0.3926 -0.2724
C,H, 16 -0.339 —0.4395 —04774 —0.3544
C,Hg 18 —0.510 —0.4839 —0.5251 —0.3745

#0n H atoms, the NPA can be obtained from symmetry and molecular charge using the NPA values on non-hydrogen atoms listed; in case
of LiF the NPA refers about Fluor atom; for Eqg. (3) the NPA is a good choice for par( A).
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Fig. 3. RECEP-c (a) and RECEP-d (b) relative correlation energy (cf. Table 1) vs. G2 relative correlation energy (hartree) for the second set
of molecules listed in Table 3. (Relative means: values deviating with respect to LiH molecule.)

lem in G2 theory with some of the fluorine
molecules’’ [34].

4, Conclusions

The quasi-linear dependence of the correlation
energy on the partial NPA charges in molecules was
developed and analyzed in Eq. (3), which is literally
a density functional method based on atotally differ-
ent technique than the known other methods. We
propose two sets for the atomic correlation parame-
ters to use in Eq. (3). One atomic correlation energy
set is derived from the atomic full-Cl and HF—-SCF
limit results, noted as RECEP-c (footnote ¢ values in
Table 1); another set is derived from the B3LYP
caculations, noted as RECEP-d (footnote d valuesin
Table 1). The partial atomic charges used in Eq. (3)
were derived from the NPA analysis of HF /6-311 +
G(2d,p) wave-function, readily available in (e.g.) the
GAUSSIAN 94 /DFT package [8]. The results show
that both RECEP-c and RECEP-d parameter sets
provide similar results for the selected 18 molecules
and ions that contain first row elements. For the
protonated, neutral, and deprotonated water and am-
monia, and the methane and the deprotonated
methane we obtained a good linear relationship be-
tween RECEP-d and G2 correlation energies (R? =
0.99), dthough the dope is far from the unity.
Because of the missing core correlation from G2

thereis a — 73.4 mh shift between RECEP-d and G2
correlation values. Comparison of the G2 and RE-
CEP relative correlation energies for the full set of
18 molecules and ions reveals, that there is a dlightly
better agreement between the RECEP-c and G2 val-
ues (R?=0.944), than between the RECEP-d and
G2 vaues (R?=0.930). The slope is considerably
closer to the unity in the former case as well.

In summary, the method in Ref. [11] has been
refined in this Letter in four respects: First by using
the partial charges from natural population analysis,
which has good convergence properties with respect
to the basis set increase. Second with an improved
accounting for correlation energy for H atoms in the
molecules. Third by suggesting new atomic parame-
ter sets; and fourth by providing a theoretical back-
ground for partitioning the correlation energy for
atoms in molecules.

5. Supplementary material

A small database of the geometries, NPA charges,
and energies of 18 selected molecules and the RE-
CEP atomic parameters is provided via http://
web. i nc. bne. hu/ nol s/ recep/ . The simple
Fortran program for Eg. (3) with the RECEP-d
E.«(N,,Z,) parameters can be downloaded from
http: // userww. service. enory. edu/
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~ekristy/ or can be obtained via emall
(skri st 2@nory. edu) or surface mail.
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