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SIMPLE TESTS FOR DENSITY FUNCTIONAL METHODS

Introduction

ohn and Sham1 proved that the exactK ground-state electron density and energy of
a many-electron system may be obtained by solv-

Ž .ing self-consistent field SCF equations analo-
Ž .gously to the Hartree]Fock HF method. In the

Ž .Kohn]Sham KS method, the HF exchange energy
is replaced by the exchange correlation energy,
which is a functional of the electron density, and
the HF exchange potential is replaced by the ex-

Ž .change correlation potential i.e. the KS potential ,
which is the functional derivative of the exchange
correlation energy.2, 3 KS formalism can be imple-
mented similarly to the HF method, thus the com-
putational cost of KS DFT is similar to that of the
HF method. The exact self-consistent KS equa-
tions1 yield eigenfunctions, f , and eigenvalues,j
« , in the same way as the HF method. Moreover,j

the KS f orbitals reflect the correlation effects andj
Ž .yield the exact electron density, r r , and the KS

highest eigenvalue, e , is the negative of theHOMO
exact, many-body ionization potential.

The exact KS exchange term can be calculated
from the f orbitals. However, the exact Coulombj
correlation potentials are generally not known,
consequently, approximate potentials are used in
practice. The most successful generalized gradient

Ž . 4 ] 7approximation GGA DFT methods use a uni-
fied derivation of the exchange and correlation
terms. It should be noted that the exchange and
correlation energy, as defined in DFT, may be
different from the conventional exchange and cor-

Žrelation energy i.e. with respect to the HF method
. 8as reference . It was also observed that, because

of cancellation effects, the results are better if the
exchange and correlation terms are approximated
together9 compared with the results obtained with
the exact exchange.10 ] 13 The GGA DFT provides a
very efficient recovery of electron correlation com-
pared with very expensive traditional methods
and yields quite good thermochemistry in the
standard thermochemical test set of molecules.14

The studies of GGA exchange correlation holes
and the adiabatic connection formula15 have shown
that the exact exchange hole is poorly represented
by GGA models in covalent bonds.16, 17 To remedy
this error, a simple, three-parameter hybrid GGA
model was proposed and the exact exchange was
mixed with the GGA functionals. The weight of
the exact exchange and local approximation was

chosen to fit the experimental thermochemical
data.16 The proposed mixing reduced the 6-
kcalrmol average atomization energy errors of
GGA to 2.4 kcalrmol in the same thermochemical
test set of molecules.16 In 1995, Becke constructed

Ž .a new correlation functional termed Bc95 on the
Žbasis of four exact conditions uniform electron gas

limit, distinct treatment of opposite-spin and par-
allel-spin correlations, self-interaction free, and fit-

. 17ted to exact correlation energies of atoms . This
new correlation functional did not perform partic-
ularly well when combined with Becke’s earlier

Ž .exchange functional termed B . The average and
maximum errors were 8.6 kcalrmol and 28.6
kcalrmol, respectively; however, one parameter
inclusion of the exact exchange reduced these er-
rors to 2.0 and 7.5 kcalrmol, respectively.17

An alternative method for development of func-
tionals is presented by Perdew’s group. Graphical
comparison of the enhancement factors over local
exchange permits the analysis of errors of different
GGAs.18 These diagrams help to check the existing
functionals if they satisfy the exact known condi-
tions for the exchange correlation hole. It has been
shown that neither of the currently used function-
als satisfy all known conditions. For example, the
low-density convexity constraint provides a diffi-
cult challenge for approximate functionals to meet.
Fortunately, this is not an important condition for
most real systems, which are very far from the
low-density limit.

The essential problem is that the GGA form is
too simple to represent all of the nonlocality of

Žexchange correlation no matter which exact condi-
.tions we impose upon it . ‘‘The residual GGA

error is just the price we pay for having a simple,
easily implemented, universal functional. The GGA
form is most appropriate for uniform or slowly
varying densities. When we apply it to mole-
cules or atoms, we are extrapolating.’’19 The

Ž . 20, 21Perdew]Wang PW correlation functional was
designed to satisfy as many conditions as possible
and it satisfies more exact conditions than the

Ž .Perdew P functional. However, the two function-
Žals show similar performance the PW functional is

. 22more reliable for difficult cases . Moreover, the
Ž . 7Lee]Yang]Parr LYP functional, which is inaccu-

rate in the uniform electron gas limit18 and incor-
rectly gives zero correlation energy in any ferro-

Ž .magnetic all spins aligned system, frequently
yields good results with chemical examples. To
illustrate the difficulties further we recall that the
improved bond energies of Becke’s exchange func-
tional was attributed to the better asymptotic be-
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havior to the exchange energy density.6 Later, En-
gle et al. showed that Becke’s exchange energy
density attains the correct behavior at large dis-
tances where it has almost no effect on the energy.23

These investigators constructed a functional that
did not satisfy the correct asymptotic condition but
yielded even better exchange energies. Further
study showed that the GGA corrections provided
much improvement in energies over the LSDA;
however, they provide much less improvement in
asymptotic behavior of the exchange correlation
potential.24 An indication of this is that the GGA
potentials provide almost no improvement in
LSDA eigenvalues, which are generally seriously
in error.

Another source of error is the self-interaction
error. In exact KS theory, a Coulomb self-interac-
tion contribution is exactly canceled by an ex-

Ž .change contribution like in HF theory and the
correlation self-interaction contribution is zero.
Approximate exchange correlation functionals re-
sult in an imperfect cancellation of the Coulomb
and exchange terms and nonzero correlation self-
interaction contributions. To remedy this, Perdew
and Zunger25 proposed an orbital-based self-inter-

Ž .action correction SIC for atoms at the LSDA level.
We previously mentioned that Becke proposed a
self-interaction free correlation functional, Bc95.
The comparison of atomization energy data shows
that B-Bc95 exchange correlation combination is
inferior to Becke or PW in thermochemical exam-
ples,17 despite the self-interaction error of the PW
functional. Recent investigations of the self-interac-
tion error showed that this error is more important
for hydrogen abstraction barriers than for heat of
formations26 and the primary source of this error
is in the Coulomb-exchange part.27 Thus, eliminat-
ing the self-interaction for a correlation functional
alone will not improve the results. We mention
that the LYP correlation functional is also self-in-
teraction-free; however, the Becke or LYP methods
provide a considerable self-interaction error for
hydrogen abstraction barriers.26, 27

Buijse et al. constructed an exact KS potential
from the electron density of two-electron systems.28

They have shown that the LSDA q Becke]Perdew
GGA has a different functional dependence on the
electron density than that of the exact KS poten-
tial.29 It should be noted that the difference may
integrate close to zero, thus approximate GGA
DFT functionals provide reasonable energetic re-
sults. They have also proposed an iterative proce-
dure to construct accurate exchange correlation
potentials for many-electron systems from the

Ž . 28ground state electron density, r r . A similar
procedure was proposed by Wang and Parr.30 The
ground state electron densities and first and
second order density matrices obtained from full

Ž .configuration interaction CI calculations were re-
cently used to construct correlation energy densi-
ties for the He atom and H molecule.31 Also,2
recently, Burke et al. proposed an approach to
obtain accurate energies from exact electron densi-
ties.32 Comparisons of the electron densities calcu-
lated by various methods provided some interest-
ing insights into the working mechanism of the
electron correlation.33

In the present work the functional dependence
of the equilibrium molecular geometry and total
energy of H is analyzed. We pay a special atten-2
tion to the self-interaction error and the influence
of the A, B, and C parameters of the hybrid
functionals, thus the inclusion of the exact ex-
change. Next, we analyze the exact KS potential in
the bond critical point of the dissociating H 2
molecule. Finally, we analyze the functional de-
pendence of the errors of the electron density along
the internuclear axis in H . The errors in the DFT2
exchange correlation functionals manifest them-
selves through incorrect ground state electron den-
sity distributions. Provided that the exact electron

Ž .density or a very good preferably full CI approxi-
mation for the exact electron density is known, we
can compare it to various approximate electron

Ž .density distributions, r r . The gradient vector
Ž . 2 Ž .field, =r r , and the Laplacian, = r r , of the elec-

tron density can also be used for comparison pur-
poses. The H molecule is suitable for this study,2
because the complete CI results can be ap-
proached. The H molecule is also the simplest2
existing molecule in which the exchange correla-
tion effects can be studied. The exact KS potential

Ž .of H can be easily expressed in terms of r r ,2
< Ž . < 2 Ž .=r r , and = r r .

Computational Methods

1 Ž .The Kohn]Sham total energy E is com-K S
posed from the following energy terms:

Ž .E s E q E q E q E q E 1K S T V J X C

where E is the noninteracting kinetic energy, ET V
is electron]nuclear attraction energy, E is theJ
electron]electron Coulomb repulsion energy, EX
is exchange energy, and E is the correlation en-C
ergy. The SIC25 was designed to fulfill the follow-
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Ž .ing equations for any one electron density, r r :1

w Ž . x w Ž .x Ž .E r r , 0 s yE r r 2X 1 J 1

w Ž . x Ž .E r r , 0 s 0 3C 1

where 0 in the bracket is the opposite-spin electron
density.

The following self-interaction correction term is
added to the energy:

Ž i i i . Ž .E s y E q E q E 4ÝS IC J X C
i

where

1 1
i Ž . Ž . Ž .E s r r r r dr dr 5HHJ i 1 i 2 1 22 r12

i w Ž . x Ž .E s F r r , 0 dr 6HX x i

i w Ž . x Ž .E s F r r , 0 dr 7HC c i

where the summation is running over all occupied
orbitals; c , F , and F are exchange and correla-i x c

Ž . < < 2tion functionals, respectively; and r r s c .i i
It should be noted that the orbitals that mini-

mize the SIC total energy are not the KS orbitals.
These orbitals are localized and elaborate methods
are required to construct them for larger molecules.
For SIC calculations we used the program de-
scribed in Refs. 26 and 27.

We use the following combinations of function-
als:

( )i B]P and B]PW: The Becke 88 exchange
function6 is combined with the correlation
functionals of Perdew 865 and Perdew]
Wang 91,20 respectively.

( )ii B3P is a hybrid method. It is a linear com-
bination of various exchange and correla-
tion functionals in the form:

w x Ž . w xA ? E Exact q 1 y A ? E SX X

w x w xq B ? D E B q E VWN5X C

w x Ž .q C ? D E P 8C

w x w x w xwhere E Exact , E S , and D E B areX X X
the exact, Slater, and Becke6 exchange

w x w xfunctionals and E VWN and D E P areC C
the Vosko, Wilk, and Nussair 534 and Per-
dew 5 correlation functionals, respectively.

w xNote that D E B is a gradient correctionX
to the S q WVN or LSDA, for exchange,

w xand D E P86 is a gradient correction forC
correlation.

The constants A, B, and C are those
determined by Becke by fitting heats of

Ž . 16formation A s 0.2, B s 0.72, C s 0.81 .
Note that Becke used the PW correlation
functional instead of P.16

( )iii P-LYP method, in which Becke’s exchange
functional is combined with the correlation
functional of Lee, Yang, and Parr.7

( )iv B3LYP is a hybrid method. This functional
was not published before the implementa-
tion into the Gaussian-92rDFT.35 It is a
logical extension of Becke’s three-parame-
ter concept using different correction func-

Ž .tionals e.g., LYP in the form:

w x Ž . w xA ? E Exact q 1 y A ? E SX X

w x Ž .q B ? E B q 1 y CX

w x w x Ž .? E VWN3 q C ? E LYP 9C C

The constants A, B, and C are selected to
be equal to those determined by Becke for
the B3P method. Note also that different
VWN parameterized is used for the local
correlation.

The calculations were carried out using the
Gaussian-9436 computer program on Silicon
Graphics workstations. A fine-pruned grid having
75 radial shells and 302 angular points per shell
Ž .about 7000 points per atom was used in all calcu-
lations. For comparison, we also calculated the
electron density with HF, CISD, and correlated
single reference many-body perturbation theory
Ž . 37MBPT using Møller]Plesset partition to the sec-

Ž .ond order MP2 . The geometry of the hydrogen
molecule was fully optimized using various meth-
ods supplemented with triple-split-valence plus

Ž . Ž . Ž .38polarization 6-311G d, p , d, 2pd , and d, 3pd
basis sets. The properties of the gradient vector

Ž .field of the electron density, =r r , were calculated
from the wave functions prepared by the Gaussian
using the AIMPAC package,39 which was modi-
fied in our laboratory to perform grid calculations.

Results and Discussion

GEOMETRIES

Figure 1 shows the equilibrium H—H distance
for the H molecule vs. theoretical methods sup-2
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FIGURE 1. Optimized H—H distances of H equilibrium structure. SIC denotes the DFT calculations with2
( )self-interaction correction and 6-311++ G d, 3pd basis set. The experimental result is denoted by a horizontal line.

Ž . Ž .plemented with 6-311G d, p , 6-311G d, 2pd , and
Ž .6-311qq G d, 3pd basis sets. The CISD results

Ž .CISD is full CI for the H molecule show the2
smallest basis set dependence and they are very
close to the experimental results. The HF results
show a characteristic bond shortening for the H—H
covalent bond. The origin of this bond shortening
will be discussed later. The inclusion of the
Coulomb correlation provides considerable bond
lengthening. The Coulomb correlation introduced
by the MP2 method is quite insufficient as the

ŽMP2 results are closer to HF than CISD results cf.
.Fig. 1 .

The LSDA H—H equilibrium bond length is
Ž .very long 1.45 Bohr; not shown in Fig. 1 . The

GGA DFT methods provide considerably better,
although overly long, equilibrium distances. The
B]PW functional performs better than the B]P for

Ž .H and H cf. Fig. 1 and Refs. 26 and 40 . Slightly2 3
better agreement with CISD results was obtained
with B]LYP functional. The partial inclusion of the

Ž .exact exchange B3LYP, B3PW, and B3P in Fig. 1
provide very close results to CISD and experiment.
At first sight it might be said that the GGA DFT
methods exaggerate the Coulomb correlation ef-
fects and the inclusion of the exact exchange
dampen this overcorrelation. However, it should
be noted that these functionals are not self-interac-
tion-free and the introduction of self-interaction

Ž . 27correction SIC results in large effects. It was
observed that the SIC shortens the H bond length2

by 0.03]0.04 Bohr, thus the GGA DFT q SIC calcu-
Žlations provide too-short H bond lengths cf. Fig.2

.1 and Refs. 26 and 27 . It is interesting to note that
the GGA q SIC H bond lengths are shorter than2
the HF bond lengths, thus the main source of the
bond lengthening for H is the self-interaction2
error that simulates the Coulomb correlation ef-
fects for H . The inclusion of the exact exchange2
does not significantly influence the SIC results. It
should also be noted that the effect of the inclusion
of SIC is larger than the inclusion of the exact

Ž .exchange cf. Fig. 1 .
The GGA DFT and hybrid DFT H equilibrium2

bond lengths do not show large basis set depen-
dence. The 6-311G basis set provides fairly stable
results, only a y0.0022-Bohr bond shortening was
experienced as the basis set quality was increased

Ž . Ž .from d, p to d, 2pd . This is similar to the corre-
Ž . Ž .sponding HF y0.0022 Bohr , MP2 y0.0024 Bohr ,

Ž .and CISD y0.0011 Bohr basis set extension ef-
fects. All methods are consistent in bond shorten-
ing as the basis set quality increases, the largest
basis set effect was shown with the BLYP method
Ž . Ž .y0.0033 Bohr cf. Fig. 1 . A recent investigation
of the DFT basis set extension effects yielded simi-
lar results.41 The improvement of the basis set to

Ž .6-311qq G d, 3pd results in a fairly small bond
Ž .distance change it is below y0.0004 Bohr .

To study the inclusion of exact exchange we
Ž .varied the A, B, and C coefficients of Eq. 8 over

the ranges 0.1]0.4, 0.65]0.75, and 0.75]0.95, re-
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spectively, and calculated the corresponding
Ž .B3Pr6-311G d, 2pd H equilibrium bond length.2

These calculations yielded the following equation:

Ž .r H—H s 1.4413 y 0.0860 ? A y 0.0500 ? B

Ž . Ž .q 0.0220 ? C Bohr 10

ŽThis equation provides very precise up to four
. Ž .decimal places H bond lengths, r H—H in the2

given range. The predictive force of this simple
equation is quite surprising and signals that these
effects are independent of each other in the param-
eter range studied. As expected, the increasing
weight of the exact exchange shortens the bond
length. Becke’s gradient correction for exchange
decreases, and Perdew’s gradient correction for
correlation increases H—H bond length. It is pos-

Ž .sible to reproduce the experimental 1.401 Bohr H
—H distance with appropriate selection A, B, and
C. It should be noted that an infinite number of
solutions exist that reproduce the experimental
bond length.

A rather similar equation was obtained for the
Ž .B3Pr6-311G d, p results:

Ž .r H—H s 1.4437 y 0.0860 ? A y 0.0500 ? B

Ž . Ž .q 0.0220 ? C Bohr 11

Ž .thus, apart the slightly larger r H—H , the coeffi-
Ž . Ž .cients of eqs. 10 and 11 agree with each other.

The B and C parameters cancel each other’s effect,
thus these parameters seem somewhat superflu-
ous. This is in accordance with recent results of

Perdew’s group42 and with the latest hybrid func-
tional proposed by Becke.17

TOTAL ENERGY

Table I shows the total energies for H molecule2
using various levels of theory. It should be noted
that, except for the BLYP method, the GGA DFT

Žmethods provide slightly lower energies italic val-
.ues in Table I than the experimental value. The

only exception is the B3P method, which provides
Ž .considerably lower energy cf. Fig. 2 . The basis set

effects are smaller for the GGA DFT methods than
for MP2 or CISD methods. It seems that the GGA
DFT methods recover the Coulomb correlation en-
ergy even with relatively small basis sets. Improv-

Ž .ing the basis set quality from 6-311G d, 2pd to the
Ž .6-311qq G d, 3pd level results in only about a

Ž .0.02-millihartree energy decrease Table I . This
small energy decrease is up to 10 times smaller
than basis set effects of CISD or MP2 methods.
However, it should be noted that the inclusion of
SIC considerably changes the PW energies, whereas
it has quite an insignificant effect on LYP energies.
The origin of the too-low energies is the electron
self-interaction error.

Ž .We varied the A, B, and C coefficients of eq. 8
over the ranges of 0.05]0.4, 0.65]0.75, and
0.75]0.95, respectively, and calculated the corre-

Ž .sponding B3Pr6-311G d, 2pd total energies. These
calculations yielded the following equation:

Ž .E tot s y1.17213 y 0.0908 ? A y 0.0892 ? B

Ž .q 0.0481 ? C 12

TABLE I.
( )Total Basis Set Extension and SIC Energies a.u. for H Molecule Calculated with Various Methods and2

aBasis Sets.

b( ) ( ) ( ) ( ) ( ) ( )Method 6-311G d, p 6-311G d, 2pd 6-311++ G d, 3pd DE 2pd DE +3pd DE SIC

HF y1.13249 y1.13300 y1.13307 y0.00051 y0.00007
MP2 y1.16027 y1.16463 y1.16495 y0.00436 y0.00032
CISD y1.16834 y1.17231 y1.17253 y0.00397 y0.00022
B ]LYP y1.16917 y1.16961 y1.16962 y0.00044 y0.00001 y0.00061
B ]PW y1.17616 y1.17650 y1.17651 y0.00035 y0.00001 0.01316
B ]P y1.17752 y1.17789 y1.17791 y0.00037 y0.00002
B3LYP y1.17957 y1.18001 y1.18003 y0.00044 y0.00002 0.00039
B3PW y1.17858 y1.17895 y1.17897 y0.00037 y0.00002 0.01187
B3P y1.21515 y1.21555 y1.21558 y0.00040 y0.00003

a ( ) ( ) ( ) ( )Energies lower than experiment y1.1744 a.u. are in italic. DE 2pd is the energy change between d, p and d, 2pd basis sets,
( ) ( ) ( )DE +3pd is the energy change between d, 2pd and++ G d, 3pd basis sets.

b ( )From Ref. 27. The SIC was calculated with the 6-311++ G d, 3pd basis set.
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FIGURE 2. The calculated total energies of the H equilibrium structure. SIC denotes the DFT calculations with2
( )self-interaction correction and 6-311++ G d, 3pd basis set. The CISD result is denoted by a horizontal line. The

( )extremely low energy less than y1.2155 a.u. provided by B3P method is shown by the arrow.

The energies calculated by the help of this equa-
Žtion usually show a rather good agreement within

.0.02 millihartree with the real hybrid DFT results.
If A ) 0.3, then the precision of the approximation
becomes worse. At A s 0.4 the error is about 0.14
millihartree. A rather similar equation was ob-

Ž .tained for the B3Pr6-311G d, p results:

Ž .E tot s y1.17175 y 0.0908 ? A y 0.0892 ? B
Ž .q 0.0481 ? C 13

This equation again provides quite good agree-
ment with the computed hybrid DFT results. The
observations made above for the H equilibrium2
bond length are valid for the energy. For example,
the appropriate selection of the B and C parame-

Ž .ters C is equal to about 2 B cancel each other’s
effect.

EXACT KS POTENTIAL IN BOND
CRITICAL POINT

Ž .The occupied KS orbital, c r , of the ground
state of the H molecule can be expressed by the2

w Ž . Ž . x'electron density c r s r r r2 . Introducing
this into the KS equations provides an explicit

expression for the exact KS potential of H , v K S:43
2

22 Ž . Ž Ž ..= r r =r r
K S Ž . Ž .v r s y q « 14Ž . Ž .4r r 8r r

Ž .where p r is the exact ground state electron den-
sity and « is the ionization potential of the hydro-

Ž .gen molecule. In the bond critical point BCP , the
Ž .=r BCP s 0; thus:

2 Ž .= r BCP
K S Ž . Ž .v BCP s q « 15Ž .4r BCP

It is known that the description of the dissocia-
tion of the H molecule is a thorough test for any2
method. Leeuven and Baerends have shown that
GGA DFT potentials fail to provide correct behav-
ior of the potential in the BCP.42 These approxi-
mate potentials go to infinity as the H molecule is2

K S Ž .dissociating, while the exact v BCP goes to the
positive constant, y« .37 Figure 3a shows the

Ž .CISDr6-311G d, 2pd Laplacian in the bond mid-
Ž .point BCP as a function of H—H distance below

5 Bohrs. It is expected that the Laplacian values
decay exponentially at large H—H distances. Fig-
ure 3a clearly shows that, below 5 Bohrs, the
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( ) ( ) ( ) ( ) ( )FIGURE 3. The CISD Laplacian BCP a and the method dependence of Laplacian BCP / density BCP b vs. the
( )H—H distance in the dissociating H molecule. BCP denotes the bond critical point the midpoint . The calculations2

( )were carried out with the 6-311G d, 2pd basis set.

2 Ž .= r BCP has not reached yet its exponentially
decaying range, while the electron density in the

Ž .bond midpoint, r BCP, R , decays exponen-HH
tially above the 3.5-Bohr H—H distance. The fol-
lowing equation was thus obtained:

Ž . I1 .1317 R HH Ž .r BCP, R s 1.451 e 16HH

2 Ž . Ž .in atomic units. Thus, = r BCP rr BCP in Figure
3b is far from being constant. Because of the con-
vergence problems with Gaussian-94 for CISD cal-
culations above the 5-Bohr interatomic distance we
could not calculate addition points. Another limit-
ing factor may be the use of Gaussian basis sets, as
they are not completely reliable asymptotically.
The curves below 5 Bohrs in Figure 3b clearly
show that, at a normal covalent bond length, the
CISD potential is approximated quite well in the
BCP by any of the potentials calculated from HF,
DFT, or MP2 electron density; however, above 3
Bohrs, the error becomes quite important. The poor
performance of the HF method is apparent, and
the GGA DFT functionals show only very slight
improvement. At large internuclear separation the
MP2 method provides a considerably better poten-
tial than the DFT methods studied here.

ELECTRON DENSITY ALONG THE
BOND PATH

Besides comparison of the calculated electron
densities and Laplacians in the BCP, comparison of
the electron densities along the internuclear axis
can reveal further details. We do not consider our
values for electron density to be completely pre-

cise very near the nuclei or asymptotically because
our densities are represented in terms of Gaussian
basis sets. Figure 4a shows the electron density
differences calculated by various methods com-
pared with CISD results for the geometry-opti-
mized H . Figure 4b shows the electron density2
differences for a fixed, 1.401-Bohr H distance. The2
origin of the horizontal coordinate is placed in the
BCP in these figures and the largest distance is 1.3
Bohrs, thus these curves should be free of asymp-
totic errors. Comparison of Figure 4a and b reveals
that the geometry optimization influences the
Ž .r BCP considerably. All methods, except LSDA,

approximate the CISD electron density in the BCP
Žwithin 0.002 a.u. for a fixed H distance cf. Fig.2

.4b . The geometry optimization nearly triples those
differences and produces step-like difference func-
tions near the nuclei. Figure 4a and b clearly show
that the HF method overconcentrates the electron
density for covalent bonds in the BCP, while a
serious underestimation of the electron density
occurs near the nuclei. This necessarily results in

Žtoo-short covalent bond lengths cf. ‘‘Geometries’’
.subsection , and in an overestimation of the elec-

tron density in directions perpendicular to the
bond axis. The MP2 method improves the electron
density considerably. The poor performance of the
B-LYP functional is apparent from Figure 4a and b.
It provides the opposite error as compared with
the HF method—a small electron density in the
BCP and an overestimated electron density near
the nuclei. The B]P method provides a consider-
ably better electron density than the B]LYP,
whereas the B]PW is slightly worse than the B]P
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( ) ( )FIGURE 4. Electron density differences a.u. as a function of the distance Bohrs from the bond center in H along2
( ) ( ) ( )the internuclear axis calculated at optimized a and experimental b H distances. The CISD / 6-311G d, 2pd electron2

density was used as a reference. Negative values indicate smaller electron densities compared with CISD results.

method. The B3P method yields the best agree-
ment with CISD electron density for H .2

This fact inspired us to test the influence of the
Ž .A, B, and C parameters of eq. 8 on the electron

density of H at experimental interatomic dis-2
tance. Figure 5 shows that it is possible to obtain
a nearly perfect agreement with the CISDr6-

Ž .311G d, 2pd electron density and we were able to
reduce the electron density difference below
"0.0003 a.u. along the internuclear axis. However,
for this purpose, the originally proposed A, B,
and C parameters should be changed. The slight

increase of A to 0.21 seems to be necessary to get
correct electron density in the BCP. The values of

Ž .B and C parameters of eq. 8 play an important
role. The B s 0.72 and C s 0.81 values are respon-
sible for the too large electron density peak in the
nuclei for the B3P method. Setting the value of C
to 0.91 and the value of B to 0.67 eliminates most
of this peak. It is interesting to note that the

Ž .parameter values of B and C of eq. 8 influence
the electron density near the nuclei, whereas the
value of A influences the electron density mainly
in the BCP. The parameters B and C again act in

VOL. 18, NO. 121542
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( )FIGURE 5. Electron density differences a.u. calculated at an experimental H distance as a function of the distance2
( ) ( )Bohrs from the bond center in H along the internuclear axis. The CISD / 6-311G d, 2pd electron density was used as2
a reference. Negative values indicate smaller electron densities compared with CISD results. The legend shows 100-fold

( )values of A, B, and C. Numbers 21, 68, 90 indicate A = 0.21, B = 0.67, and C = 0.91 in eq. 1 .

the opposite direction: a one-point decrease in B
Žhas the effect of a two-point increase in C cf.

.Fig. 5 .

Conclusions

It has been shown that GGA DFT methods
provide too-long equilibrium distances for H ;2
however, the partial inclusion of the exact ex-
change provides very close results to CISD and
experiment. The main source of the bond lengthen-
ing is the self-interaction error that simulates the
Coulomb correlation effects for H . The inclusion2
of the exact exchange does not significantly influ-
ence the self-interaction corrected results and it
results in a much smaller effect than the self-inter-
action.

The values of A, B, and C parameters of the
B3P hybrid DFT method influence the H—H equi-
librium bond length through a very simple linear

w Ž . Ž .xequation cf. eqs. 10 and 11 . The increasing
weight of the exact exchange shortens the bond
length. Becke’s gradient correction for the ex-
change shortens the H—H bond, and Perdew’s
gradient correction for the correlation lengthens
the H—H bond. It is possible to reproduce the
experimental H—H distance with appropriate se-
lection of A, B, and C parameters. It should be
noted that an infinite number of solutions exist
and the B and C parameters may cancel each
other’s effects as they act in the opposite direction.

The GGA DFT methods provide slightly lower
energies than the experimental value for H . The2

origin of the too-low energies is the electron self-
interaction error. The basis set effects are up to 10
times smaller for the GGA DFT methods than for
MP2 or CISD methods.

The values of A, B, and C parameters of the
B3P hybrid DFT method influence the total energy

wof H through a very simple linear equation cf.2
Ž . Ž .xeqs. 12 and 13 . The increasing weight of the

Ž .exact exchange A and Becke’s gradient correc-
Ž .tion for the exchange B decrease, and the increas-

ing weight of Perdew’s gradient correction for the
Ž .correlation C increases the total energy. The ap-

propriate selection of the B and C parameters
cancels out each other’s energetic effect.

From the study of electron density and the
Laplacian of the electron density in the bond criti-
cal point of the dissociating H molecule the fol-2

lowing conclusion can be drawn: The GGA DFT
functionals show only a very slight improvement
over the HF method. At large internuclear separa-
tion the MP2 method provides a considerably bet-
ter potential than the DFT methods studied here.

Investigation of the electron densities along the
internuclear axis reveal the typical HF error for
covalent bonds. The HF method overconcentrates
the electron density in the bond critical point while
a serious underestimation of the electron density
occurs near the nuclei. The GGA DFT methods
provide the opposite error.
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The suitable selection of the A, B, and C pa-
rameters of the B3P-type hybrid functional re-

Žsulted in a nearly perfect agreement electron den-
.sity difference below "0.0003 a.u. with the full CI

electron density along the internuclear axis. The
originally proposed A, B, and C parameters pro-
vide a large electron density peak in the nucleus
for the B3P method. The parameter values of B
and C influence the electron density near the nu-
clei, while the value of A influences the electron
density, mainly in the BCP. A slight increase of A
to at least 0.21 seems necessary to obtain correct
electron density in the BCP. B s 0.67 and C s 0.91
eliminates nearly completely the error of the elec-
tron density near the nuclei. The parameters B and
C again compensate each other’s effect: a 1% de-
crease in B has the effect of a 2% increase in C.
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