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Ž .ABSTRACT: The self-consistent Madelung potential SCMP approach for
calculating molecular wave functions for a subunit embedded in a symmetrical
environment constituted by the copies of the subunit is implemented with
semiempirical NDDO model Hamiltonians and supplemented with empirically
parameterized dispersion]repulsion interaction potentials. This model yields
sublimation enthalpies in good agreement with available experimental data for
a series of molecular crystals, including imidazol, benzimidazole, urea, urethane,
dicyaneamide, formamide, uracil, cytosine, maleic anhydride, succinic
anhydride, and 1,3,5-triamino-2,4,6-trinitro-benzene. The SCMP-NDDO method,
which avoids difficulties concerning the parametrization of charges in the
molecular mechanics force fields, is proposed mainly for the treatment of
molecular crystals with large unit cells. It might be particularly useful where
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important charge reorganization is expected under the effect of the crystal field.
Charge distributions, obtained by the SCMP and the simple dielectric cavity
self-consistent reaction field models, are compared and analyzed. Q 1998 John
Wiley & Sons, Inc. J Comput Chem 19: 38]50, 1998
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Introduction

uantum chemical treatment of organicQ molecular crystals constitutes a major chal-
lenge of molecular modeling. Empirical force field
methods often correctly describe the crystal struc-
ture,1 but such classical approaches have recently
been recognized as missing certain structure-defi-
ning interactions.2

Apolar or moderately polar systems could be
successfully characterized by force fields without
ry1-dependent explicit Coulomb terms,1, 3 but con-
sideration of the strong electrostatic forces seems
to be a necessity in strongly polar or partly ionic
systems.4 ] 7 The introduction of explicit Coulomb
terms leads to a serious complication in the param-
eterization of the force fields. While the nonelec-
trostatic van der Waals parameters of a given atom
type are transferable from one system to another,
atomic charges, entering in the Coulomb part of
the force field, show very limited transferability. In
a series of closely related molecules charge trans-
ferability may be relatively poor,8 ] 10 and even the
same molecule changes its charge distribution as a
function of its conformation.11] 16 Furthermore, the
chemical environment may lead to substantial re-
organization of the charge density with respect to
the isolated molecule, which makes questionable
the usefulness of atomic charges determined in
vacuo.17 Such effects might be exalted in the solid
phase. For example, in-crystal dipole moments can
be considerably enhanced.18 One can cite the ex-
ample of 2-methyl-4-nitroaniline, where experi-
mental evidence seems to indicate the doubling of
the free-molecule dipole moment from 9 D to 20 D,
due to crystal field effects.19 Even if this estimate
of the dipole moment enhancement may be some-
what exaggerated due to difficulties in assigning
experimental charge density to individual mole-
cules in the crystal, it is quite clear that in such
cases the electronic polarization is strongly nonlin-
ear. Under the effect of the crystal field, strongly

polar proton transferred structures may be stabi-
Ž 4.lized e.g., amino acid crystals and even inter-

molecular charge transfer may take place, as in
donor]acceptor complex crystals.20 Because the
amplitude of these charge density rearrangements
exceeds the linear regime, the usual polarizable
models are insufficient and consideration of higher
hyperpolarizabilities would be necessary. The most
satisfactory way to tackle this problem consists of
the self-consistent calculation of the charge distri-
bution of the subunits in each new situation en-
countered in a solid environment.

A straightforward method to avoid the difficul-
ties related to the parameterization of intermolecu-
lar interactions in a solid is to explicitly calculate
the electronic structure, for example, by the peri-

Ž . 21odic Hartree]Fock HF approach. However, in
this method relatively few electrons per unit cell
can be treated and the absence of electron correla-

Žtion from the model missing dispersion interac-
.tions results in an incomplete description of the

intermolecular forces. Recent developments in
density functional-based approaches, using a plane
wave basis and ultrasoft pseudopotentials, may
constitute a promising alternative22 ] 24 for molecu-
lar crystals as well, as witnessed by the first at-
tempts along this line.25

Another possibility is to build finite clusters of
molecules, modeling the most important interac-
tions of a central molecule with its neighbors.26

This procedure is quite well adapted to study
crystal growth,27 but it is less appropriate for the
simulation of real solids where the 3-dimensional
periodicity should be properly taken into account.
Large ab initio models, comprising at least the
nearest neighbors of a central molecule, embedded
in the field of point charges is a relatively expen-
sive, but successful way of including most of the
important intra- and intermolecular interactions in
the computational model.28 ] 31 The nearest neigh-
bors can be represented more accurately by ab
initio model potentials: this procedure has been
used mainly for ionic systems.32 ] 35

Ž .The self-consistent Madelung potential SCMP
approach36, 37 seems to be a good compromise to
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treat local electronic structures with traditional
quantum chemical methods and simultaneously to
take into consideration long-range electrostatic and
induction effects in a solid. This approach can be
considered as a kind of electrostatic embedding,
where explicit quantum chemical calculation is

Žperformed only on a basic motif unit cell or asym-
.metric unit , and electrostatic interactions with the

copies of this basic unit are taken into account by
modifying the electronic Hamilton operator. Be-
cause the charge distribution of the neighbors is
determined by that of the basic motif by the virtue
of symmetry, the calculation should be repeated
until self-consistency in the perturbing potential.
Various implementations of the SCMP model,
mainly at the ab initio level, have been published
during the past 25 years.38 ] 42 Although molecular
crystals with relatively large unit cells can be
treated by ab initio versions of SCMP-like meth-
ods, we feel that a semiempirical version, which
allows rapid calculation on unit cells constituted of
about 30]60 atoms or more, is in order.

The present implementation of the SCMP ap-
proach, integrated with a simple dispersion]repul-
sion potential energy function, should be consid-
ered as a kind of mixed quantum mechanicalr

Ž .molecular mechanics QMrMM model specifi-
cally adapted to the solid phase. The reliability of

Žthe combined energy expression intramolecular
energy and intermolecular electrostatic and induc-
tion effects are taken into account at the semiem-
pirical NDDO level, and intermolecular dispersion
and repulsion are included by the empirical poten-

.tial has been tested on dimers. In these dimer
studies we used the fact that the presence of the
translational symmetry does not make it obliga-
tory to use an SCMP-like approach: it can be
applied to n-mers of identical subunits related by
any kind of symmetry operation. Only half of the
dimer is considered explicitly and the charge dis-
tribution of the second half is generated by the

Žappropriate symmetry operation e.g., inversion
.center, mirror plane, etc. . This situation is ana-

lyzed in some detail in the following.
Results for the sublimation heat of a few se-

lected crystals, where reliable experimental data
were available, were compared. Recently it became
a common practice to mimic a solid crystalline
environment by a simple continuum dielectric
model,43 like in solvent effect theories. We exam-
ined whether the SCMP enhancement of the dipole
moment can be reproduced by a continuum dielec-

tric model using an ellipsoidal cavity. This analy-
sis is also presented after the discussion of the
energetic results on the sublimation heats.

Method

Mixed QMrMM models have an increasingly
important role in the treatment of extended sys-
tems, primarily in the study of biopolymers and

Ž .their reactions see refs. 44]46 . The philosophy of
these methods is that the total system is separated
into a subsystem and an environment: the former
is treated quantum chemically, while the latter is
treated classically. Our approach is similar in the
sense that the crystal is separated into a quantum
chemical motif and the rest of the system. The
motif is defined as the portion of the system from
which the charge distribution of the whole crystal
can be built up by symmetry operations. Although
the most straightforward choice for the motif is the
asymmetric unit, any multiple of the asymmetric
unit might be appropriate to generate the full
crystal.

The motif is described by a standard quantum
chemical method, in our case by a semiempirical
model Hamiltonian. The environment is repre-
sented by a set of point multipoles whose effect is
included in the quantum chemical Hamiltonian.
Because the environment is built up from repeated
motifs, the point multipoles representing the envi-
ronment have to be consistent with the wave func-
tion of the quantum motif. The interaction of the
motif with its environment is complemented with
a classical atom]atom dispersion]repulsion poten-
tial.

The quantum chemical part of our model is
based on the SCMP approach discussed in detail in
refs. 37 and 47. Here the main features of the
method are recapitulated and the semiempirical
parametrization of the QM and MM parts of the
Hamiltonian are described. The behavior of the
mixed QMrMM energy is discussed in terms of
physical contributions and analyzed numerically
with the example of symmetrical dimers.

SCMP APPROACH

The molecular crystal is considered to be a
Ž .system of interacting subsystems motifs . A unit

cell is constituted from Z motifs, which are usu-
ally identical with a crystallographic asymmetric
unit. The total energy per asymmetric unit can be
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expressed as the sum of the quantum chemical
total energy of the arbitrarily selected ith motif
Ž . Ž .asymmetric unit of the L s 0 ' 0, 0, 0 unit cell
and two interaction terms, namely the QM treated
electrostatic and the MM dispersion]repulsion
contribution:

SCMP i , 0 ˆ i i , 0² < < :E s C H C0

Z `1
X i , 0 i i , 0 j , L j j , L² < < : ² < < :X Xq C D C T C D Cˆ ˆÝÝ r rr r2 j L

Z `1
X MM Ž .q E . 1ÝÝ i0, jL2 j L

In this expression C j, L is the wave function of the
motif j in the unit cell labeled by a set of three

ˆ iŽ .integers, L s l , l , l ; H is the Hamiltonian of1 2 3 0
the isolated motif i; D i is the operator of the totalr̂
charge density of the ith motif,

i Ž . Ž .D s Z d r y R y d r y r ,ˆ Ý Ýr A A a
Agi agi

where the nuclei A have the charge Z and theA
< X <y1

Xelectrons a belong to the motif; T s r y r isrr
the Coulomb-kernel; and EMM is an empiricali0, jL
potential energy function that takes into account
those interactions between motifs i0 and jL that
are missing from the quantum chemical energy
expression. The repeated lower indices r in the
second term imply a generalized Einstein conven-
tion: one should integrate over the corresponding
space variables to obtain the Coulomb interaction
energy. The summations run over the Z symmetry
operations, j, within the unit cells. The primed
sums running over the unit cells L exclude the

Ž .L s 0, 0, 0 term if i s j.
The hypothesis underlying this energy expres-

sion is that the total wave function of the crystal is
a Hartree product of normalized, antisymmetrized
subsystem wave functions, which are strongly or-
thogonal to each other. We can use the fact that the
wave function C j, L located in an arbitrary unit cell
can be generated from the wave function C ' C1, 0

ˆ j, Lof the motif by an appropriate rototranslation, Q ,

j , L ˆ j , L ˆ j , L ˆ Ž .C s Q C Q s U ¬ t q R , 2½ 5j j L

ˆwhere U is a rotation, t is a translation within thej j
unit cell, and R s l a s l b q l c is a latticeL 1 2 3
translation defined in terms of the integers
Ž . � 4 Žl , l , l and the lattice vectors, a, b, c . For the1 2 3
sake of simplicity we assumed that all the motifs
of the unit cell are identical; generalization to

.binary, etc. systems is straightforward. By virtue
of the crystal space group symmetry, the SCMP
energy depends only on the wave function of the
asymmetric unit:

1
XSCMP MADˆ² < < : ² < < : ² < < :XE s C H C q C D C G C D r Cˆ ˆ0 r rr2

Z `1
X MM Ž .q E . 3ÝÝ 10 , jL2 j L

Here the symmetrical Madelung kernel, GMAD
X ,rr

Z `
X XMAD j , LˆŽ .XG s T r, Q rÝÝrr

j L

Z `
y1X Xˆ< < Ž .s U r y r q t q R , 4ÝÝ j j L

j L

gathers the lattice sums over sublattices.
Assuming that the MM dispersion]repulsion

energy does not depend on the motif wave func-
tions, the energy ESCMP is made stationary by the
solution of the following nonlinear Schrodinger¨
equation:

ˆ MAD² < < : < : < : Ž .X XH q r G C r C C s EE C . 5ˆ ˆž /0 r rr r

This nonlinear Schrodinger equation is quite simi-¨
Ž .lar to the self-consistent reaction field SCRF

equations48 of solvent effects theories. The main
difference is that the reaction potential response

Žfunction of the solvent expressed usually by the
.reaction field factors is replaced here by the

Madelung interaction kernel, GMAD
X .rr

The solution of the nonlinear SCMP Schrodinger¨
Ž .equation, eq. 5 , can be obtained by any standard

quantum chemical approach. For example, in the
Ž .case of the HF]Roothaan HFR method the usual

matrix elements F 0 of the Fock operator shouldmn

be completed by integrals involving the Madelung
kernel:

0 Ž < MAD < .XF s F q P mn G lsÝmn mn sl rr
ls

Ž < MAD Ž . < . Ž .y m Z G r, R n . 6Ý A A
A

Here Z is the nuclear charge, P s 2Ýoccc c isA nm a m a n a
the density matrix, and the Coulomb-like two-elec-
tron Madelung integrals over atomic orbitals are
defined as

Ž < MAD < .Xmn G lsrr

3 3 X Ž . Ž . MAD Ž X . Ž X . Ž .Xs d r d r m r n r G l r s r . 7HH rr
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The SCMP-HFR equations can be solved either
directly by updating the Madelung contribution to
the Fock matrix element in each iteration, or indi-
rectly by solving the HFR equations each time at a
fixed value of the Madelung potential,

MAD Ž . MAD² < < : Ž .XV C s G C D C , 8ˆr rr r

and iterating until the Madelung potential con-
verges.

The total energy per asymmetric unit is given as

1
SCMP 0 0E s P F q hŽ .Ý mn mn mn2 mn

1
Ž .q Z Z T R , RÝÝ A B A B2 A B

Ž < MAD Ž . < .y P m Z G r, R nÝ Ýmn A B
mn A

1
MADŽ < < .Xq P P mn G lsÝÝ mn ls rr2 mn ls

1
MAD Ž .q Z Z G R , RÝÝ A B A B2 A B

Z `1
X M M Ž .q E . 9ÝÝ 10 , jL2 j L

The actual implementation of the SCRF ap-
proach sould be completed by defining the
parametrization of the quantum chemical Hamilto-
nian and the MM energy expression. These points
are discussed in the following subsections.

PARAMETERIZATION OF QUANTUM
CHEMICAL HAMILTONIAN

The present semiempirical implementation of
the SCMP method is based on the NDDO model
Hamiltonian of the motif. Among the most popu-
lar MNDO,49 AM1,50 and PM351 models finally the

Ž .AM1 parametrization has been retained vide infra .
Choosing a representation for the electrostatic

perturbation term remains, which couples the mo-
tif with its periodic images. A common feature in
the NDDO models is to evaluate the intramolecu-
lar Coulomb integrals as damped interactions of
point charge sets that mimic atomic multipole
charge distributions.49 The generalization of this
approximation to the SCMP Hamiltonian would
be simple: the Madelung kernels should be calcu-
lated for all pairs of point charge centers and the
matrix elements corrected by the core repulsion
function taken for the nearest neighbors. Although

such an approach has conceptual advantages, the
core repulsion function is not always adapted
to the description of intermolecular complexes.
Therefore, an alternative solution has been chosen,
where one replaces the point charge sets by the
corresponding point multipoles. This leads to an
equivalent long-range behavior of the electrostatic
interactions, while the intermolecular repulsion

Ž .energy as well as other short-range contributions
can be taken care of more appropriately by the
MM potential function.

The calculation of the electrostatic perturbation
of the motif HF equations is based on the evalua-
tion of the lattice sums. Up to the tensors of Ry3

the Ewald method was used, and the convergence
parameters were determined by the method of
Catti.52 Higher order tensors were calculated as
direct space sums. The highest order tensor is that
of Ry5, corresponding to the interaction between

Žthe products of two p orbitals i.e., between two
.quadrupoles .

An essential feature of the SCMP method is that
the wave function of the motif is relaxed in the
Madelung potential of the crystal. This means that,
in addition to the electrostatic energy, which is
usually defined as the Coulomb interaction of the
in vacuo charge distribution of the motifs, induc-
tion effects are also included in the quantum
chemical calculations.

PARAMETRIZATION OF
DISPERSION]REPULSION POTENTIAL

ŽTo correctly describe the energetics e.g., the
.sublimation energies in molecular crystals, the

further physical contributions to the total energy,
like the long-range dispersion and the short-range
penetration and overlap repulsion energies, should
also be taken into consideration. These missing
terms can be evaluated relatively easily by com-
plementing the SCMP energy expression with an
empirical dispersion]repulsion potential.

The 6-exp atom]atom model potential, derived
by Filippini and Gavezzotti3, 53 and modified by
Willock et al.,6 was selected because it has been
applied successfully for molecular crystals.6 Its
analytical expression,

eabMME sab Ž .l y 6
60R Rab abŽ .= 6 exp l exp yl y l ,0ž / ž /RR abab

Ž .10
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seems to be well adapted to describing the missing
interaction terms. Here the parameters e sab

10 0 0Ž .e e and R s R q R are derived by' aa bb ab aa bb2

using the common combining rules, and l is a
universal parameter for all kinds of interactions.
The total dispersion]repulsion energy between a
pair of motifs is calculated as

MM MM Ž .E s E , 11Ý Ýi0, jL ab
agi0 bgjL

where a runs over the atoms of the central motif
and b runs over atoms of jL, provided they are
within a given cutoff distance. The cutoff radius,

˚which varied between 40 and 60 A for the studied
systems, was determined for each case such that
its further increase affected the energy less than 0.1
kJrmol.

Analysis of SCMP Potential Energy

COMPONENTS OF SCMP LATTICE ENERGY

Ž .The cohesion lattice energy of a crystal,
D ESCMP, is defined as the difference of the total
SCMP energy and the isolated monomer energy,
calculated from the in vacuo monomer wave func-
tion, F:

SCMP SCMP ˆ² < < : Ž .D E s E y F H F . 120

As usual in the theory of intermolecular interac-
tions, the total lattice energy can be decomposed to
various physical contributions as

D ESCMP s Eele q Epen q E rep q E ind q Edis q Echt ,
Ž .13

namely, the first-order multipolar electrostatic,
penetration, and overlap repulsion, as well as the
second-order induction, dispersion, and charge
transfer energies. Among these terms the multipo-
lar electrostatic, Eele, and induction, E ind, can be
easily identified from the quantum chemical calcu-
lation. The electrostatic energy, which is the
Coulomb interaction of the unperturbed monomer
charge distributions,

1ele MAD² < < : ² < < : Ž .X XE s F D F G F D F , 14ˆ ˆr rr r2

can be obtained from the first SCMP iteration if the
in vacuo density matrix is used as the initial guess.
The induction energy, which is the energy gain
due to the electric polarization of the motif charge

densities,

ind ˆ ˆ² < < : ² < < :E s C H C y F H F0 0

1 MAD ele² < < : ² < < : Ž .X Xq C D C G C D C y E , 15ˆ ˆr rr r2

is calculated from the converged charge density
and includes the energy loss related to the defor-
mation of the motif wave function. The long-range
electrostatic q induction energy is expected to be
reliable, because semiempirical NDDO methods
yield quite reasonable charge distributions. In-
deed, NDDO methods reproduce electrostatic ef-
fects correctly outside the van der Waals envelope
of molecules.54

The remaining physical contributions, which are
also expected to contribute significantly to the co-
hesion energy in crystals, are included in EMM .
Penetration energy, Epen, related to the nonmulti-
polar contribution to the electrostatic energy, is
expected to be important for near atoms in the
crystal. It is supposed to be included in the short-
range exponential component of the classical po-
tential, along with the overlap repulsion energy,
E rep. The other essential component of EMM is the
dispersion energy, Edis. We note that it cannot be
obtained in the HF approximation; therefore, in
the case of motifs composed of several molecules
Ž .this did not occur in the present study , the con-
sideration of intramotif dispersion energy might
be necessary.

POTENTIAL CURVES OF
SYMMETRICAL DIMERS

The quantitative behavior of the potential en-
ergy model deserves further investigation. We
think that knowledge of the variation of the poten-
tial with intermolecular distances is fundamental
in exploring the range of the applicability of the
model, and its correct behavior is a prerequisite for
its applicability in future geometry optimization55

applications and in molecular dynamics studies.
The intermolecular potential of symmetrical

dimers of H O, HCOOH, NH OH, CO , and HCN2 2 2
were calculated. These dimer structures do not
necessarily correspond to the optimal orientation
of the monomers; they were selected such that the
two monomers were connected by a point group

Ž .operation inversion . In all five cases three inter-
molecular potentials were compared:

SCMP Ž1. D E calculation performed on a mono-
mer and corrected by the symmetry-related

.partner ,
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FIGURE 1. Interaction energies for a series of symmetrical dimers calculated by the usual AM1 model Hamiltonian, by
BSSE-corrected ab initio method at the MP2 level, using the correlation-consistent polarized valence double zeta
( )cc-pVDZ basis set, and by the SCMP method, using the DE energy. The water dimer has been calculated withSCMP
the aug-cc-pVDZ basis set.
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Ž2. standard AM1 interaction energy standard
.dimer calculation , and

3. basis-set superposition error corrected MP2
interaction energy with correlation-consistent

Žpolarized valence double z basis MP2rcc-
.56 Ž .pVDZ standard dimer calculation .

The latter method was considered as a refer-
ence. Because D ESCMP is based on the AM1 meth-
od, a comparison of the first two potentials shows
the improvement in the description of the inter-
molecular interactions as achieved by deriving
D ESCMP from standard AM1.

Figure 1 shows that the D ESCMP potential curves
are consistently closer to the MP2 results than the
AM1 curves. In most of the systems the D ESCMP

potential reproduces the intermolecular separation
corresponding to the energy minimum of the refer-

˚ence potential within 0.1]0.2 A In the case of the
very flat curve of the CO dimer, the difference is2

˚about 0.2 A. The error in the energy at the mini-
mum varies regarding both its absolute and rela-
tive value. The error is largest for the NH OH2

Ž .dimer 25 kJrmol, over 50% while in all other
cases it is considerably lower.

With the exception of the water dimer, the AM1
interaction energy curves are higher than D ESCMP

in almost the whole range studied. In all cases,
D ESCMP reproduces the reference curve better than
does AM1. The potential curves of Figure 1 sup-
port the idea that the direct use of semiempirical
Ž .intermotif integrals is not appropriate for repro-
ducing intermolecular interaction energies. The re-
placement of intermotif integrals by interaction of

Ž .self-consistent SC multipoles and the addition of
an appropriate dispersion]repulsion potential not
only compensates for the error caused by the ne-
glect of resonance and exchange integrals that are
inherent in the SCMP approach, but it results in an
intermolecular potential considerably superior to
AM1.

The relatively good performance of the potential
model obtained from the independently derived
QM and classical dispersion]repulsion potentials
suggests that not only the sum, but also the sepa-
rate components are basically correct. This finding
is in line with previous observations that NDDO
semiempirical electrostatic potentials are able to
reproduce more accurate ab initio electrostatic po-
tentials, primarily outside the van der Waals enve-
lope where the short-range penetration component
is less important.54

Results and Discussion

LATTICE ENERGIES

The reliability of the SCMP model has been
Ž .studied for a series of molecular crystals cf. Fig. 2

by comparing experimental sublimation en-
thalpies, with lattice energies calculated with vari-
ous parameters. Due to the approximations in-
volved when equating calculated lattice energies
with experimental sublimation enthalpies, the in-
trinsic significance threshold of such a comparison
has been estimated to be about 8.5 kJrmol.57 A
more stringent test of the model would be to check
whether the theoretical minimum of the lattice
energy is close enough to the experimental struc-
ture. Such a comparison is going to be done in the
near future.55

The coordinates of atoms of a single molecule of
the crystal as determined by X-ray or neutron
diffraction measurements were taken and, follow-

FIGURE 2. Structural formulae of the molecules. The
CSD codens are listed in Table 1.
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ing the protocol of Willock et al.,6 the C—H,
N—H, and O—H bond distances were set to 1.08,

˚1.01, and 0.96 A, respectively. Selected data con-
cerning the crystal structures used in this study
are compiled in Table I.58 ] 68

Then the wave function and the energy of the
free molecule were calculated. The crystal SCF
calculation was started with the density of the
isolated molecule; thus, the difference between the
energy in the first SCF cycle and that of the iso-
lated molecule gives the electrostatic component
Ž ele.E of the cohesion energy. The difference be-
tween the SCF energy and the energy calculated
with the density matrix of the isolated molecule is

Ž ind .the induction energy E .
The electrostatic and induction energies, as cal-

culated with various parameterizations, are pre-
sented in Table II. Considering the effect of param-

eterization on the electrostatic energy, in most
cases the order Eele ) Eele ) Eele is found.PM3 MNDO AM1
The dependence of the induction energy on the
parameterization is less significant. However, it
should be noted that in the PM3 parameterization
an artefactual minimum of the core repulsion func-
tion appears, which may produce unphysical dis-
tortions of the intermolecular potential energy sur-
face.69, 70 Due to this feature, the PM3 model is
inappropriate for the present purpose. The AM1
method suffers much less from this problem.69

Table III presents calculated energies as ob-
Ž SCMP .tained with AM1 parameters D E and experi-

Ž exp. 71 ] 73mental sublimation enthalpies E . Taking
into account that in most cases the calculated ener-
gies underestimate the experimental values, and

Žthat AM1 predicts the largest stabilization cf. Table
.II , it is found that the best agreement between

TABLE I.
( )Cambridge Structural Database CSD Coden, Space Group, and Number Molecules ///// Unit Cell for Crystal

Structures Considered.

aMolecule CSD Coden Space Group Z

58Imidazol IMAZOL13 P2 rc 41
59Urea UREAXX P42 m 21

60Benzimidazol BZDMAZ P2 nb 41
61Formamide FORMAM P2 rc 41

62Cytosine CYTSIN01 P2 2 2 41 1 1
31,3,5-Triamino-2,4,6-trinitro-benzene TATNBZ P1 2

64Uracil URACIL P2 ra 41
65Maleic anhydride MLEICA P2 2 2 41 1 1

66Succinic anhydride SUCANH P2 2 2 41 1 1
67Urethane ECARBM01 P1 2

68Dicyanodiamide CYAMPD03 C2rc 8

a Number of symmetry related molecules in the unit cell.

TABLE II.
( )Electrostatic and Induction Contributions kJ ///// mol to Stabilization Energy of Crystals as Calculated by MNDO,

AM1, and PM3 Parameterizations.

ele ele ele ind ind indMolecule E E E E E EMNDO AM1 PM3 MNDO AM1 PM3

Imidazol y37.7 y42.1 y35.8 y13.8 y15.8 y15.8
Urea y57.6 y62.5 y49.4 y21.6 y23.3 y19.7
Benzimidazol y33.4 y42.0 y35.7 y12.6 y15.0 y15.5
Formamide y40.9 y44.3 y36.5 y15.0 y16.4 y16.0
Cytosine y74.1 y79.7 y67.9 y24.8 y26.9 y25.8
TATNBZ y43.1 y53.0 y35.8 y7.8 y7.6 y7.4
Uracil y54.3 y61.6 y50.7 y19.1 y20.8 y19.5
Maleic anhydride y32.6 y27.6 y28.4 y6.4 y5.9 y6.0
Succinic anhydride y37.0 y33.4 y34.8 y7.8 y7.6 y8.0
Urethane y33.3 y36.4 y28.3 y8.4 y9.1 y9.0
Dicyanodiamide y74.3 y76.4 y68.5 y25.2 y26.9 y29.3
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TABLE III.
( )Comparison of Calculated and Experimental Lattice Energies kJ ///// mol .

SCMP cal a cal b expMolecule DE E E E

c, dImidazol y82.6 y87.9 y67.2 y83.0
cUrea y96.7 y106.8 y77.5 y98.6
eBenzimidazol y94.7 y102.2
c, fFormamide y68.3 y85.0 y61.8 y71.7
cCytosine y145.7 y169.3 y128.5 y155.0
cTATNBZ y177.5 y191.0 y154.0 y168.2
cUracil y107.6 y130.5 y102.7 y131.0
gMaleic anhydride y67.9 y68.1
gSuccinic anhydride y73.8 y82.3
gUrethane y71.2 y80.1
gDicyanodiamide y137.7 y129.3

a Energies with nonoptimized parameters given by Willock et al.6
b Energies with nonoptimized parameters given by Coombes et al. as EST + 0.9DMA.7
c Reference 71.
d Other available value: y83.1.7 2

e Reference 72.
f Other available value: y73.9.7 3

g Reference 73.

calculated and experimental lattice energies is
achieved by using AM1 parameterization. There-
fore, from now on the calculated cohesion energies
Ž SCMP .D E refer to those obtained with AM1 pa-
rameters.

According to Table III the calculated lattice en-
ergies reproduce the experimental sublimation en-
thalpies within 10 kJrmol. The only exception is
uracil, for which the difference between the experi-
mental and the calculated lattice energy is 23
kJrmol. In almost all the cases the lattice energies
calculated at the experimental structure are higher
than the experimental heats of sublimation. Be-
cause optimization of the structural parameters
always lowers the energy, calculated cohesion en-
ergies are thought to move toward the experimen-
tal ones during lattice relaxation.

It is worth comparing our results to those of
two recent publications6, 7 on the calculation of
crystal structures and energies for polar molecular

Ž .crystals see Table III . Considering the work of
Willock et al.,6 the only difference between their
model and ours is in the electrostatic-induction
part of the energy expression: Willock et al. use an
ab initio distributed multipole set to represent the
electrostatic effects and they do not consider any
induction contribution explicitly.

Coombes et al.7 also use an ab initio distributed
multipole model for representing electrostatic ef-
fects. Their dispersion]repulsion potential is dif-
ferent from that used by Willock et al.6 and in the

present work and appears to predict less stabiliza-
tion of the crystal by the dispersion]repulsion
energy component. Coombes et al.7 presented sev-
eral combinations of the distributed multipole and
the dispersion]repulsion potentials and applied
them to a wide range of molecular crystals. Their
lattice energies in the experimental geometry cal-
culated as the sum of the scaled DMA q disper-

Žsion]repulsion energy designated by 0.9DMA q
EST in ref. 7 and in Table III of the present contri-

.bution consistently underestimate the experimen-
tal values. We note, that the DMA q EST model
Žnot presented explicitly by the authors, but recon-

.stituted from the published data in ref. 7 , when
applied at the experimental structure, reproduces
the experimental values fairly well. The optimiza-
tion of the structural parameters of the crystals
considerably improved the agreement between the
lattice energies predicted by the 0.9DMA q EST
model and experimental values. The deviations
between them are attributed by the authors to the
incomplete inclusion of the induction and charge
transfer components and to the uncertainty in the
experimental lattice energies.

Comparing our results with the above cited two
works, the overall agreement between calculated

Žand experimental lattice energies is similar see
.Table III . In contrast to those models, ours in-

cludes a semiempirical method to describe electro-
statics. The computational requirements of the
quantum chemical calculation shows the typical
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behavior of semiempirical methods. For small unit
cells it is comparable to that of the empirical dis-
persion]repulsion energy that is almost instanta-
neous on modern workstations. Thus, molecular
crystals with relatively large unit cells, containing
50]100 atoms, which is typical, for example, in
pharmaceutical research can be routinely treated.

An important feature of our method is the ex-
plicit treatment of the induction energy. Data in
Table III show that the polarization component
may be as large as 1r3 of the electrostatic term.
This considerably exceeds the polarization compo-
nent typical in binary interactions but seems to be
in line with ab initio SCMP results.37 The large
magnitude of the induction energy points out that
a correct description of the lattice energy of crys-
tals requires the accurate reproduction of the in-
duction energy component. The availability of sep-
arate electrostatic and induction energies offers the
possibility to test the approach that uses a set of
enhanced multipoles to implicitly include polar-
ization in the electrostatic energy. Such an ap-
proach would be justified by a constant ratio of the
two energy components. Comparing the electro-

Ž ele . Ž ind .static E and induction E energies ofAM1 AM1
Table II, their ratio is indeed near 3 in most cases.
There are, however, notable deviations from this
rule; the most important is found for TATNBZ,
where the induction energy is relatively small and
Ž ele . Ž ind .E r E is as high as 7.AM1 AM1

At this point it should be noted that it is diffi-
cult to predict how much induction energy has
been adsorbed into the dispersion]repulsion po-
tential derived by Willock et al.6 and applied in
the present study. Its parameters were fitted to
experimental lattice energies by using no explicit
induction term and by using a distributed multi-
pole set calculated from HF 6]31G** wave func-
tions, which are known to overestimate the magni-
tude of the multipoles, therefore mimicking, at
least to some extent, induction effects. As far as
some of the potential energy parameters are es-
timated on an experimental basis, ambiguities
concerning the relative importance of various in-
teraction energy components cannot be fully elimi-
nated.

Net atomic charges calculated in the SCMP ap-
proach are enhanced with respect to values of the
isolated molecules. This enhancement affects pri-
marily the H-bond acceptor atom. The dipole mo-
ments are also increased by factors between 1.2

Ž .and 1.6 Table IV .

TABLE IV.
( mol)Dipole Moment of Free Molecules m Compared

to Those in Crystal Calculated by SCRF and SCMP
( )Methods Debye Units .

mol SCRF SCMPMolecule m m m

Imidazol 3.74 4.70 5.58
Urea 4.46 5.54 6.47
Benzimidazol 3.28 4.34 5.16
Formamide 3.94 4.84 5.65
Cytosine 6.51 8.68 9.15
TATNBZ 0.27 0.28 0.43
Uracil 4.47 5.85 6.73
Maleic anhydride 4.04 4.81 5.00
Succinic anhydride 4.66 5.69 5.77
Urethane 2.34 3.07 3.32
Dicyanodiamide 7.40 9.51 10.74

The dielectric constant, « , in the SCRF model has been
chosen to be very high in order to approximate the best the
in-crystal dipole moment.

SCMP VERSUS SCRF MODELS

The effect of the crystalline environment on the
molecular charge distribution andror geometry is
sometimes taken into account in quantum chemi-
cal calculations by a simple dielectric continuum
model.43 Previous analysis of both formalisms
clearly showed48 that these two approaches, the
SCMP and SCRF, lead to analogous quantum
chemical equations. The main difference is in the
evaluation of the effective response functions of
the environment, specific to the model of the
medium. Nevertheless, in both cases the influence
of the medium is manifested by a global screening
effect on the direct Coulomb interactions between
real charges. In the SCMP model one appropriately
takes into account the anisotropy of the crystal,
while the continuum model corresponds usually to
an isotropic environment.

It is possible to judge whether the SCRF ap-
proach is an appropriate model for crystals by
comparing the relevant terms of the effective
Madelung kernel and of the reaction potential re-
sponse function. Alternatively, instead of the di-
rect study of the response functions, we can exam-
ine observables, like the in-crystal dipole moment.

Our SCRF calculations were done with the ellip-
soidal cavity model of Rinaldi et al.,74 ] 76 using a
monocentered multipolar expansion of the direct
and reaction potentials, as implemented in the
Geomos semiempirical program package.77 The
SCRF model was used with a sixth-order single-
centered multipole expansion of the molecular
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charge distribution, the size of the cavity was
taken from standard prescriptions, and the dielec-
tric permittivity, « , was varied between 1 and
1000. These calculations indicated that the maxi-
mum enhancement of the molecular dipole mo-

Žment in a continuous dielectric medium without
.modifying the standard cavity size is 0.7]2.1 D

Ž .3]33% . This enhancement is still 1]18% less than
the one calculated by the SCMP model of the
crystalline environment.

Conclusions

We conclude that the computational approach,
based on the implementation of the SCMP with a
semiempirical NDDO model Hamiltonian, is an
effective way to obtain lattice energies for molecu-
lar crystals. It is suggested that the AM1 Hamilto-
nian with atomic point multipoles can be success-
fully combined with the atom]atom dispersion]
repulsion potential proposed by Willock et al.6

This method provides a realistic description of
dissociation curves for various van der Waals
dimer systems. Calculated lattice energies, com-
posed of electrostatic, induction, and dispersion]
repulsion components, are in reasonable agree-
ment with available experimental sublimation
enthalpies.

The good performance of the presented quan-
tum classical model can be attributed to a reliable
modeling of electrostatic q induction interactions
using SC multipoles calculated by the SCMP
method and to the application of an empirical
dispersion]repulsion potential that does not ad-
sorb the electrostatic contribution. Due to its low
computational cost, the SCMP-NDDO approach is
primarily suggested for molecular crystals with
large asymmetric units. The implementation of
SCMP-NDDO forces is in progress.55

We showed that the continuum model should
be used only as a crude first approximation to
estimate the influence of solid-state environments.
Although the general trend of the condensed phase
induction effects is the same, highly ordered crys-
talline environments may lead to much stronger
dipole moment enhancement than the continuum
cavity models. It is recommended, in general, to
apply the SCMP model, which explicitly uses the
available experimental structures and is capable of
taking into account the anisotropic nature of inter-
molecular interactions in crystals.
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