Journal of Molecular Structure 410-411 (1997) 387-390

Journal of

MOLECULAR
STRUCTURE

Flexible ab initio geometry of methylamine and its internal rotation

Lajos Sztraka®*, Gédbor 1. Csonka®

“Department of Physical Chemistry, Technical University of Budapest, H-1521 Budapest, Budafoki it 8, Hungary
®Department of Inorganic Chemistry, Technical University of Budapest, H-1521 Budapest, Gellért tér 4, Hungary

Received 26 August 1996; accepted 6 September 1996

Abstract

A flexible geometry for the methylamine molecule was computed by the Becke—Perdew (B—P86) density functional method.
Fifteen geometrical parameters (bonds and angles) were used for describing the flexible geometry. The reliability attained by
the geometry was tested by the reproduction of four experimental rotation coefficients. © 1997 Elsevier Science B.V.
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1. Introduction

Methylamine is a totally flexible molecule with two
different types of large amplitude motion, internal
rotation and inversion, whose geometrical parameters
(bonds and angles) depend on the large amplitude
coordinates. It is not possible to determine the flexible
geometry directly from the high resolution spectrum.
From high resolution transitions, however, very accu-
rate rotational coefficients can be obtained.

Recently we computed the flexible geometry of
methylamine by different high level ab initio methods
at a fixed internal rotation angle (o = 0) and at differ-
ent inversion coordinate values between —130° and
+130° for amino wagging angles [1]. For the
present investigation we have used the Becke—Perdew
(B~P86) density functional method [2,3] with the 6-
311G(d) basis set and have extended the calculation to
the full range of «. To test the reliability of the geo-
metry obtained, the inversion—internal rotation
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averages of four rotational coefficients, computed
from the flexible geometrical parameters, were com-
pared with the experimental ones.

2. Results and discussion

Inversion and internal rotation are described by
means of two curvilinear coordinates, 7 and « [1].
The flexible geometry of the molecule can be
described by 15 independent geometrical parameters.
The geometrical parameter functions obtained from
the computation are generally not of purely quadratic
form, as was supposed in Ref. [4]. Furthermore, the
calculation yielded different values for the CH para-
meters. This is in contrast with the usual assumption
that the methyl group has a local threefold symmetry.
According to this, even the 120° periodicity assumed
for the internal rotation is not perfectly valid.

The rotational coefficients obtained from high reso-
lution spectra are the averages of the inversion and the
internal rotation [5]. Four coefficients determined
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from high resolution MW [6-8], MMW [9] and FIR
[6,8] transitions are available. The first and second
coefficients are R, in terms of J(J + 1) and Ry in
terms of K* of the diagonal elements of the Hamilto-
nian. The third and fourth coefficients are A, in the
k,k + 2 off-diagonal elements and d, in the k, k + 1 off-
diagonal elements of the Hamiltonian. To connect the
rotational coefficients and elements of the five-dimen-
sional inertial tensor of the molecule we have used an
extended form of the internal axis method (IAM).
Since, in the case of the flexible methyl group, the
internal rotation axis is undefined, we defined the tilt
angle of the internal rotation axis relative to the CN
bond by an empirical expression

x(e, 7)={x0— x, (1 —cos3a) }sinr,

in which the constants were determined from the
ground state and the first excited state values of the
coefficient of d,; d, is extremely sensitive to the tilt
angle.

According to Liu and Quade [10] the rotational
coefficients are expanded in a Fourier series. For
example, for the coefficient R the form of the expan-
sion is

Applying the expansion to the kinetic energy, the
zero-order Hamilton operator is

~0 1 2 1
Hi= EM&&,O(T)‘]Q + Evg(l —cos3a),

where ply(7) is the reduced inertial momentum of
internal rotation, and

J =—j2
Jo=—ig+pk.

In the operator above, p is a periodicity parameter
corresponding to the k£ dependence of the energy
levels of internal rotation.

The effective potential function of inversion V(7)
was approximated by a function proposed by Coon et
al. [11]. From Ref. [5], V, is 2081 cm™ and Te 18
53.86°. The shape parameter rh was fitted to the v,
value of the transiton n = 1 +~— 0 (v, =
780.00 cm‘]). The reduced inertia momentum u.(7)
in the Hamilton operator of inversion [5] can also be
calculated from the flexible geometry. The eigenfunc-
tions for the inversion averaging can be computed by
a numerical integration technique. After determining
the average of the ul () reduced momentum it is
possible to calculate the eigensystem of the zero-

x order internal rotation Hamilton operator.
Ry(a, T) =Ry o(1) + 21 R; p(T)cos(3ma). (0 The o-dependent part of the reduced internal
m=

Table 1
(a) Reproduction of the Ohashi—Hougen coefficients

Obs. [9] Calc. Calc.?
2hs3 (MHz) — 4987.4(1) - 4987.42 — 4987.40
2hsy (MHz) 5.68(4) 5.80 5.80
2h4 (MHz) 0.00 -0.01 -0.01
2hy, (cm™) 264.5834(2) 264.583 38 264.58337
2h;, (MHz) 120270.0(5) 120269.96 120270.03
2hs, (MHz) 2680.6(3) 2681.52 2680.35
2h4, (MHz) 100.1(3) 102.08 101.97

* Computed with fitted vibration—rotation correction coefficients.

(b) Parameters used at the reproduction of the Ohashi—Hougen coefficients

Param. Param.?
Vs(em™) 682.9310 683.5695
V¢ (MHz) 110819 117924
Vg (MHz) — 104026 — 135144
V> (MHz) -~ 18162 — 41325
c4 (MHz) ~397.54 —294.32
cs (MHz) - 11.769 - 15.034
cs (MHz) 0.0933 - 0.0245

® Determined with fitted vibration—rotation correction coefficients.
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Table 2
Rotational coefficients computed from the flexible geometry
Obs. [9] Calc. Obs.-Calc.* Calc.’
R, (MHz) 22169.39 22148.21 21.18 22169.04
R (MHz) 80986.40 80615.90 370.50 80986.39
A, (MHz) 460.51 436.95 23.56 460.25
d, (MHz) 0.00 0.00 0.00 0.00
d, (MHz)* 100.00 100.34 -0.34 99.98

* I =-0.08580, 17" =-0.09680, I:>"=-0.03560 and ;7" =0.02580, computed at the equilibrium configuration, x = 2.45967° and x, =

1.33202°.

P I =-0.12940, I§y" =-0.09597, [ =-0.05354 and IS =0.03859, x, = 2.44655° and x, = 1.34138°.

‘v=1.

rotation momentum yields an important higher order
contribution to the energy levels:

12 A N
E,= 3 2 (oo, m(TIXS icos3ma +cos3mat i).
m=1

There are other higher order contribution terms. The
terms in the potential energy are

’

Ep = %”Ez Vim(1 —{cos3may))
and the terms from the kinetic energy are
Ean= X eall3)

n=

There are higher order E;dnypot mixed terms too.

The energy levels of the internal rotor and all quan-
tum mechanical averages in the contribution have a
periodic k dependence. Thus both the averages and the
energy can be expanded in Fourier series. For exam-
ple, the form of the expansion of the averages
{cos 3ma) is

® 2
{cos3ma)=a,, o+ Z] ay, jCos [ ?Wj(pk + o)] , )
=

where v is the torsional quantum number and o is the
torsional sublevel one (6 =0, * 1).

Comparing the Fourier expansion coefficients of
the levels Ep+Ep+Exin + Exinga With the 2k,
Ohashi—Hougen expansion coefficients determined
from the ground state (v = 0) [6,9] and the first internal
rotation state (v = 1) [8,9] transitions, the constant V;
and the full potential function of internal rotation can
be determined. The results are summarized in Table 1.
Having a well determined potential constant V3, it is
possible to compute the quantum mechanical averages
and the expansion coefficients.

Substituting the expansion coefficients a,,o from
eqn (2) into eqn (1), the average value of the corre-
sponding rotational coefficient can be obtained. The
results of the averaging are collected in Table 2. The
inertial tensor elements were modified by correction
terms arising from the vibration—rotation interaction.
Unfortunately, the usual method described for rigid
molecules [12] proved to be inapplicable to the pro-
blem of methylamine. The best result can be obtained
if the linear and quadratic vibration—rotation interac-
tion terms [12] are completed by the Coriolis term
proposed by Iijima [13]. The second column of
Table 2 contains the average values computed with
the corrections mentioned above. To obtain informa-
tion about the real order of the correction values, the
calculation was also carried out with fitted correc-
tions. The results are collected in the fourth column.
It seems that the flexible geometry computed by the
B-P86 method is a reliable one.
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