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Binding or potential energy curves have been calculated for the ground state diatomics 

H2
+, He2

+, LiH+, H2, N2, and C2, for the transition state H3, and for the triplet first excited 

state of H2, using the nonempirical density functionals from the first three rungs of a 

ladder of approximations: the local spin density (LSD) approximation, the Perdew-Burke-

Ernzerhof (PBE) generalized gradient approximation (GGA), and the Tao-Perdew-

Staroverov-Scuseria (TPSS) meta-GGA. Good binding energy curves in agreement with 

coupled-cluster or configuration interaction calculations are found from the PBE GGA, 

and especially from the TPSS meta-GGA. Expected exceptions are the symmetric radicals 

H2
+, and He2

+, where the functionals suffer from self-interaction error, and the exotically 

bonded C2. While the energy barrier for the reaction H2 + H → H + H2 is better in PBE 

than in TPSS, the transition state H3 is a more properly positioned and curved saddle-point 

of the energy surface in TPSS. The triplet first excited state of H2 obeys the aufbau 

principle and thus is one of the exceptional excited states that are computable in principle 

from the ground-state functional. The PBE GGA and TPSS meta-GGA are useful not only 

for chemical applications, but also for the construction of higher-rung nonempirical 

functionals that could further improve the binding energy curves. 

 

1. Introduction and conclusions 

Kohn-Sham density functional theory1,2 is now the citation leader of both physics3 and 

chemistry4 because it predicts usefully accurate total energies, electron densities, and nuclear 
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frameworks at the computational cost of a self-consistent non-interacting electron problem. 

For the ground state of nonrelativistic electrons and massive nuclei, these predictions would 

be exact if the exact spin-density functional for the exchange-correlation energy, Exc [n↑, n↓], 

were known. 

The earliest and simplest approximation [1] to Exc [n↑, n↓] was the local spin density 

(LSD) approximation, parametrized for example as SVWN55 or PWL6: 
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occupied Kohn-Sham orbitals: 
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This nonempirical approximation, which becomes exact in the limit of uniform density, is still 

widely used in solid state physics. 

Considerable improvement in accuracy, especially for molecules, is achieved through the 

inhomogeneity correction of the generalized gradient approximation7 (GGA): 
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Still further improvement is achieved by the meta-GGA:8 
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is the non-interacting kinetic energy density, or by the hybrid functionals9 that mix a fraction 

of exact exchange with GGA or meta-GGA exchange. 

The functionals can be constructed either empirically, by fitting to selected properties of 

atoms and molecules, or nonempirically, through the satisfaction of known exact constraints 

on Exc [n↑, n↓]. Empirical GGA’s 10,11 and hybrids12,13 are popular in chemistry, and have been 

widely used. There are however several advantages14 to nonempirical functionals: (1) They 

are as universal as the constraints they respect, working accurately for solid metals and metal 

surfaces as well as for molecules, while the empirical functionals typically do not.15 (2) They 

test and deepen understanding of exchange and correlation. (3) Each rung of the nonempirical 

ladder of functionals satisfies the exact constraints appropriate to its own set of local 

ingredients (n↑( rr ), n↓( rr ),…), while the empirical functionals typically satisfy only a few 
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exact constraints. (4) Each rung of the nonempirical ladder builds upon and incorporates the 

lower rungs. Thus the Perdew-Burke-Ernzerhof (PBE) GGA7 on the second rung of the ladder 

incorporates the LSD of the first rung. Similarly the new Tao-Perdew-Staroverov-Scuseria 

(TPSS) meta-GGA8 on the third rung incorporates PBE, and may itself be incorporated into 

higher rungs of the nonempirical ladder. 

Although the TPSS meta-GGA tends to produce more accurate total energies,16 bond 

lengths and vibrational frequencies17 than the PBE GGA, the most striking practical 

improvements brought by TPSS are in the atomization or dissociation energies of 

molecules17,18 (where TPSS is in some way competitive with the popular empirical functional 

B3LYP10-13) and in the surface energies of metals.19 

Extensive tests of the nonempirical functionals are needed, not only to calibrate them for 

users but also to determine whether they are robust enough to serve as foundations for future 

nonempirical functionals on higher rungs. For a given property of a given kind of system, 

accuracy should increase or at least not decrease up the ladder. A previous meta-GGA, the 

PKZB,20 was found21 to fail for the description of hydrogen bonds, and so had to be replaced 

by TPSS.8 

There are now many confirming tests7,16-19, 22-24 of the PBE GGA and the TPSS meta-

GGA, but there have been few if any such tests for molecular binding energy curves. For 

convenience, we shall define the binding or potential energy curve as the total nonrelativistic 

fixed-nucleus energy, E, as a function of bond length, R; here we shall not subtract off the R 

→∞ limit, as is commonly done. Note that this curve defines a potential energy for the 

nuclear motion in the adiabatic approximation. Calculations of bond length, dissociation 

energy and vibrational frequency test the quality of the energy at and near the equilibrium 

geometry, but do not necessarily test its quality under finite expansions and compressions of 

the bond lengths (as demonstrated by several examples below). We provide such tests here for 

covalent bonds in closed shell and radical molecules. Besides the nonempirical functionals 

LSD, PBE GGA and TPSS meta-GGA, we have made some tests of their one-parameter 

hybrids PBEh9 (25% exact exchange) and TPSSh17 (10% exact exchange), and of the 

nonempirical Hartree-Fock (HF) or exact-exchange-only method. Because LSD and HF 

typically display severe over- and under-binding, respectively, we will focus mainly on the 

more realistic PBE GGA and TPSS meta-GGA. A future study will address the van der Waals 

bonds of the rare-gas and alkaline-earth diatomics.  

The main conclusions of the present work may be summarized as follows: 
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(a) The binding energy curves of the nonempirical PBE GGA and TPSS meta-GGA are 

qualitatively similar to one another and to those of empirical GGA’s and hybrids. 

These curves are qualitatively correct, except for symmetric radicals like H2
+ and He2

+ 

under expansion.25-30 These symmetric radicals dissociate to fractionally-charged 

fragments (e.g., H+1/2 and H+1/2) for which LSD, GGA, meta-GGA and hybrid all 

make substantial self-interaction errors, signaled by a spurious maximum in the 

binding energy curve. But the unsymmetric radical LiH+, which dissociates to Li+ and 

H, is properly described. (Approximate functionals do not always dissociate molecules 

to correctly-charged atoms or ions,31 but the spin-density functional description of 

LiH+ is unproblematic. We hope to search for problematic cases in future work.) 

(b) For these density functionals, as for single-reference wavefunction methods like a 

coupled cluster method, spin symmetry breaking32,33,34 is often needed to make a 

realistic binding energy curve, especially at expanded bond lengths. The spin 

symmetry breaking in stretched H2 and N2 is rather similar in PBE GGA and TPSS 

meta-GGA. 

(c)  For C2, where the singlet spin symmetry is broken even at the equilibrium bond 

length,35,36 the detailed shape of the true ground-state binding energy curve that arises 

from many low-lying excited states36,37 is not well described by GGA or meta-GGA. 

(d)  The equilibrium bond length and equilibrium total energy of a molecule tend to be 

described very well by the TPSS meta-GGA – in some cases better than by simple 

implementations of the coupled-cluster or full configuration interaction methods. 

(e) The energy barrier for the reaction H2 + H → H + H2 is too low in PBE GGA and 

even lower in TPSS meta-GGA (although for a large set of molecules the errors of 

energy barriers are about the same for both functionals38,39). Nevertheless, the energy 

surface near the transition state H3 is a properly positioned and properly curved saddle 

point in TPSS meta-GGA, while it is improperly positioned and improperly curved in 

PBE GGA (as in some other GGA’s40), and it is a global minimum in LSD. The good 

TPSS description of the H3 energy surface near its saddle point is consistent with the 

good TPSS description of molecular vibrational frequencies.17 

(f) The binding energy curve of the essentially repulsive triplet (fully spin-polarized) first 

excited state41 of H2 is reproduced accurately by PBE GGA and especially by TPSS 

meta-GGA. Even the very weak van der Waals minimum is found. Because it’s orbital 

energies obey the aufbau principle, this is one of the exceptional excited states that are 
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computable from the ground-state density functional, according to the spin-density 

functional generalization of Ref. 42. 

Based upon these and other studies, we conclude that the PBE GGA and the TPSS meta-

GGA are not only useful functionals for chemical applications, but are also firm and secure 

rungs on which to construct higher-rung nonempirical functionals. The fourth (and still 

incomplete) rung is the hyper-GGA, which should employ full (100%) exact exchange and a 

compatible, fully-nonlocal, self-interaction-free correlation functional. In the hyper-GGA, the 

binding curve of H2
+ should be exact, and that of He2

+ should be improved. The energy 

barriers of the H3 and other transition states should also be raised, but the binding curve for C2 

might remain as a challenge. 

 
2. Methods of calculation 

We performed most of our calculations with triple zeta quality basis sets, which have 

proved reliable for density functional computations, using the Gaussian 03 program package43 

with the Suse Linux 9.0 operating system. Basis set effects were also studied for several 

compounds, from the simplest 6-31G(d) basis set up to the largest aug-cc-pVQZ. These basis 

sets are built into Gaussian 03. We observed some SCF convergence problems with the 

Gaussian 03 implementation of the TPSS method for H3 with the usual DIIS SCF 

convergence acceleration procedure, so instead of that we used CDIIS, NoDIIS and SCF=QC 

procedures as necessary (vide infra). 

In many cases we performed quantum chemical (e.g., CCSD(T), that is nearly equivalent 

to full CI for 2 and 3 electron systems) calculations for comparison with those from density 

functional theory. The quantum chemical methods generally require larger basis sets than the 

density functional methods. We do not claim that our quantum chemical total energies are 

converged with respect to basis set limit, but we suspect that their binding energy curves are 

otherwise reasonably shaped in most cases, i.e., that they are converged around equilibrium, 

apart from an overall vertical shift of the total energy. (For example, standard basis functions 

for second-row atoms like Li typically do not include the core polarization functions needed 

to converge the correlation energy of the 1s core in a CI or coupled cluster calculation). In 

each figure we also report the exact non-relativistic energy in the dissociation limit.44,45 

 

3. Radical diatomic cations (H2
+, He2

+, LiH+) and the self-interaction error 
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Molecules with an odd number of electrons can be problematic for approximate density 

functionals.25-30 The simplest and most dramatic example is the one-electron molecule H2
+ 

(Figure 1). In the ground state, the electron spends half its time on each nuclear center. At 

large internuclear separation R, the lowest energy self-consistent solution predicted by the 

semi-local spin density functional approximations is H+0.5 … H+0.5 (D∞h symmetry). Another 

broken symmetry (C∞h) solution, but of higher energy and less stable, is of course H+1…H0 

that leads to the correct dissociation limit (see discussion of covalent and ionic dissociation 

limits for H2
+ in Ref. 29). The fractional electron number on each site leads to a large negative 

self-interaction error29,31,46,47 in the total energy at large R and to a spurious maximum in the 

binding energy curve, as shown in Figure 1 in agreement with Ref. 29. The distance 

dependence of the self-interaction error for dissociating H2
+ is shown in the Figure 2a of Ref. 

29, and an approximate formula for the distance dependence of the self-interaction error is 

also given in the Ref. 29 (cf. eq. 8). According to Ref. 29 the self-interaction error  is 

dominant above 5 Å R(H-H). 

For the one-electron molecule H2
+, the self-interaction-free HF method is exact (apart 

from small basis set errors), and it shows no spurious maximum in Figure 1. We note that 

admixture of 10% to 25% of exact exchange in a hybrid functional can produce only a minor 

improvement in the large-R behavior of the PBE or TPSS binding curves for H2
+, as we will 

show for He2
+. Around the minimum, however, the PBE and TPSS functionals are not so 

badly behaved. 

The three-electron molecule He2
+ (Figure 2) is another symmetric radical, very much like 

H2
+. For this molecule, our CCSD(T) binding energy curve has the right qualitative shape, 

while again the density functional methods show a spurious maximum. 

LiH+ (Figure 3) is another three-electron molecule, but an asymmetric one for which the 

density functionals dissociate to Li+ … H, separated fragments of integer charge for which the 

self-interaction errors are small. Figure 3 shows that all the binding energy curves have the 

same correct shape as the CCSD(T) curve. The total energy is actually most correct in TPSS, 

which converges much faster with respect to basis set than CCSD(T) does. 

 

4. Closed-shell diatomics (H2, N2) and spin symmetry breaking 

It is well-known that, when the many-electron Hamiltonian commutes with mutually-

commuting total-spin operators, the eigenstates of the former can be chosen to be eigenstates 

of the latter operators. The molecules H2 (Figure 4) and N2 (Figure 5) are closed-shell systems 

in which the true ground states for all internuclear separations R are spin singlets with zero 
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net spin density. For H2, the spin-restricted CCSD(T)/6-311G(d,p) model (equivalent to Full 

CI for this two-electron system) produces a qualitatively correct binding curve, while for N2 

the restricted CCSD(T)/6-311G(d,p) model calculation displays a spurious maximum at large 

R. This spurious maximum is a failure of single reference quantum chemistry, as discussed in 

Ref. 48 and confirmed here with larger basis set (of triple instead of double zeta quality). It 

disappears in the spin-unrestricted UCCSD(T)/6-311G(d,p) model, which starts from a 

symmetry-broken HF wavefunction. For further discussion, see Ref. 49 and 50. 

For these molecules, the approximate density functionals produce no spurious spin density 

near equilibrium, but a spurious spin density appears when R increases through the Coulson-

Fischer point where the spin-unrestricted (U) solution (using guess=mix in Gaussian 03) 

becomes energetically lower than the spin-restricted one. As R →∞, the unrestricted solution 

produces two separate atoms with opposite spin moments. This spin symmetry breaking32-34 

produces a significant improvement in the shape of the binding energy curve, for reasons that 

are well understood.34 From one point of view, the symmetry-breaking just freezes out 

energetically important spin correlations in the ground state of the dissociating molecule that 

the functional could not account for in a spin-restricted formalism. For example, consider the 

singlet ground state of Cr2 at equilibrium. The average spin density vanishes everywhere, but 

fluctuations around this average show a strong tendency to have spin up on one atomic site 

and spin down on the other atomic site, as reflected by the spin-symmetry broken spin 

densities predicted by semi-local spin density approximations. 

In H2, the Coulson-Fischer  symmetry breaking points are R = 1.7 Å in UPBE and R = 1.5 

Å in UTPSS, using the 6-311G(d,p) basis for both. In N2 they are R = 1.6 Å in UPBE and R = 

1.7 Å in UTPSS. These results are similar to the UBLYP result for N2 (R=1.5 Ǻ) of Polo et 

al.51  

Density functional calculations are normally performed in a spin- unrestricted (U) mode, 

so the symbol U is normally suppressed. In this and the following section, however, we stress 

the spin symmetry breaking by displaying the symbol U. 

 

5. The exotically bonded C2 molecule 

C2 is a molecule with several low-lying spin states, including a singlet ground state and 

several singlet excited states. The spin symmetry breaks even at the equilibrium bond length, 

in both Hartree-Fock 37 and spin-density functional theories. 35,36 

The X 1Σg
+ ground electronic state exhibits very unusual bonding, having two π bonds but 

no σ bond. The deficiencies in RHF or UHF wave functions are so severe that, in general, 
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they cannot be adequately corrected by the addition of electron correlation via single-

reference perturbation theory or coupled-cluster theory at larger atomic distances. 

Multireference methods, e.g., complete-active-space self-consistent-field with second-order 

perturbation theory corrections (CASPT252), can accurately model such problems. However, 

they are computationally more expensive and not widely available in program packages. 

Recent full CI/6-31G(d) results37 show that some of the qualitative features of the full CI 

binding energy curves are accurately captured using this modest basis set. The B 1∆g
+ excited 

state crosses below the X 1Σg
+ ground electronic state around 1.7 Å, and the two states remain 

very close in energy (with differences of less than 3 kcal/mol) as they approach the same 

asymptotic dissociation limit 2 C (3P); they are nearly degenerate at 2.8-3.0 Å. Above 1.8 Å 

the characters of the X 1Σg
+ state and a third B’ 1Σg

+ state are reversed due to an avoided 

crossing.37 This leads to an unusual shape for the ground state binding energy curve, which 

does not look like a typical Morse potential. The approximate single-reference methods have 

considerable difficulty reproducing this shape. While the restricted methods tend to have the 

greatest difficulty at large distances, unrestricted methods have more trouble in the 

intermediate region. Errors for UHF-based methods near equilibrium and the dissociation 

limit are quite small for SSB UCCSD and UCCSD(T), but they become as large as 31 and 24 

kcal/mol, respectively, at intermediate distances.37 It was observed that even iterative triples 

in full CCSDT or triples and quadruples in CISDTQ are insufficient to achieve quantitatively 

reliable results.37 

Figure 6 shows the full CI/6-31G(d) potential energy curves for the X 1Σg
+ and B 1∆g

+ 

states (noted as X and B, respectively) of dissociating C2,37 and the corresponding spin 

symmetry broken (SSB)  UPBE and UTPSS curves using the larger 6-311G(d) basis set. We 

found that the larger basis set does not yield qualitatively different UPBE and UTPSS curves 

from the smaller one. It was observed earlier by Abrams et al.37 that the C2 molecule is 

unusual in that the SSB UHF energy binding energy curve is lower than the RHF binding 

energy curve even at short internuclear distances. We observed that the restricted PBE and 

TPSS binding energy curves are running above the corresponding SSB UPBE and SSB 

UTPSS curves at short C-C distances (0.95-1.2 Å), like the RHF and SSB UHF curves. The 

Coulson-Fischer symmetry breaking point is at 0.95 Å internuclear distance for the PBE 

curves, independent of the two basis sets used in this study. 

A detailed discussion of C2 at the GGA level of description was presented in Ref. 35. At 

the equilibrium bond length (about 1.3 Å), the PW91 GGA places the broken-symmetry 
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singlet state 4.8 kcal/mol above the triplet state, although experimentally53 the singlet is 2.1 

kcal/mol below the triplet state. The PBE GGA and TPSS meta-GGA place the broken-

symmetry singlet 2.8 and 3.0 kcal/mol above the triplet, respectively, improving somewhat on 

PW91.  The electronic atomization energies De from the broken-symmetry singlet at 

equilibrium are 151.1 kcal/mol for PW91, 155.6 kcal/mol for PBE, 143.3 kcal/mol for TPSS, 

and 146.7 kcal/mol experimentally.54  Despite the good performance of the functionals for 

atomization energies, the detailed shape of the binding energy curve for C2 is predicted rather 

poorly, as discussed in the next paragraph.   

Figure 7 shows the deviations of the SSB UPBE and SSB UTPSS binding energy curves 

from a corrected full CI/6-31G(d) curve37 for X 1Σg
+ C2. It can be seen that the SSB UPBE 

and SSB UTPSS error curves are parallel; the UPBE deviation is typically larger. The largest 

errors can be observed around R = 1.8 Å. 

The spin-symmetry breaking found here in PBE and TPSS is qualitatively like that of 

PW91 from Ref. 35: Near equilibrium, the up- and down-spin densities are concentrated not 

on the atoms but on opposite sides of the bond between the atoms. At large R, the up- and 

down-spin densities are atom-centered. However, a direct energy scan with Gaussian 03 tends 

to produce PBE and TPSS self-consistent solutions for C2 at large R that rise above the energy 

of two separated carbon atoms. To get the lowest-energy solutions, we started the iteration 

from a checkpoint file kindly provided by Dr. Viktor Staroverov, and available on the website 

web.inc.bme.hu/p96.html. 

 

6. H3 transition state radical 

The H3 radical is not a stable system, but it is the transition state for the simplest hydrogen 

abstraction reaction, H2 + H → H + H2. This reaction is of fundamental practical and 

theoretical significance. The practical importance arises from the observation that the rate-

limiting step in some combustion reactions is the abstraction of a hydrogen atom from 

saturated hydrocarbons. Because there are three nuclei instead of two, and the nuclei lie on a 

line, the H3 binding energy curve is replaced by an energy surface in a two-dimensional space. 

We carried out an energy scan for both H-H distances r1 and r2 of the H3 radical between 

0.89 and 0.97 Å with a 0.01 Å step size. We compare first the TPSS and PBE/6-

311++G(d,3pd) energy scan results to the corresponding CCSD(T)/6-311++G(d,3pd) 

energies. The energy differences (DFT-CCSD(T)) are shown in the Figure 8. It can be 

observed that, in the given domain around the saddle point, the TPSS method follows the 

CCSD(T) energy surface considerably better than the PBE method does. The TPSS functional 
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not only yields a better surface around the saddle point, but it also yields an H-H distance 

(0.931 Å) for the saddle point that agrees with the CCSD(T) saddle point H-H distance (0.931 

Å, cf. Table 1). The corresponding PBE result is 0.937 Å. We note that the current 

implementation of the TPSS functional has shown SCF convergence problems, so several 

points of the surface in Figure 8 were obtained by the use of a ‘quadratically’ convergent SCF 

procedure (SCF=QC). Earlier40 it was observed that GGA functionals such as BPW91 and 

BLYP yield a consistently longer (0.934 Å) saddle point H-H distance, as does PBE (0.937 

Å), and BP86 yields a qualitatively incorrect minimum instead of a saddle point. The 

corresponding hybrid functionals yield a qualitatively correct energy surface around the 

saddle point and H-H saddle point distances around 0.930 Å.40 Interestingly the TPSS 

functional is able to yield a good quality surface curvature without mixing exact exchange. 

This feature is also shown in Figure 9, where we present the energies for the symmetric and 

asymmetric stretching curves. In the symmetric stretching curve, the two r1 and r2 H-H 

distances are equal (r1 = r2), while in the asymmetric stretching curve r1 + r2 = 1.86 Å. A 

vibrational frequency calculation can determine if the critical point r1 = r2 is a saddle point. 

We studied several functionals: SVWN5, PBE GGA, and TPSS meta-GGA, for the 

symmetric and asymmetric stretching potential energy curves of H3. We observe that the 

SVWN5 functional provides a false energy minimum for the H3 structure as shown in Figure 

9, and its false binding energy is shown in Table 1. The PBE functional cannot provide the 

right position for the saddle point; and it fails to yield the correct asymmetric stretching curve 

shown on the figure. In contrast, the TPSS meta-GGA is able to provide the correct 

asymmetric stretching curve. Similar energy curves were calculated with the CCSD(T)/6-

311G(d,p) model and are shown in Figure 9. The asymmetric stretching curve of the 

CCSD(T) method has a maximum at 0.930 Å, and this is found on the TPSS asymmetric 

stretching curve as well. However, we can see a shallow minimum in the asymmetric 

stretching curve with PBE, starting from 0.930 Å.  

Analysis of the results in Table 1 shows that, for the H3 classical barrier height, the 

CCSD(T)/6-311G(d,2pd) result (9.99 kcal/mol) is almost converged to the most expensive 

CCSD(T)/6-311++G(d,3pd) result (9.93 kcal/mol). High-quality quantum Monte Carlo 

(QMC) calculations yield 9.613 ± 0.006 kcal/mol for the barrier height,55 which is very close 

to the experimental value of 9.7 kcal/mol,56 and only slightly lower than CCSD(T)/6-

311G(d,2pd) result. However, smaller basis sets lead to a considerably larger barrier height 

for the CCSD(T) model (up to 11.14 kcal/mol with the CCSD(T)/6-311G(d,p) model, cf. 
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Table 1). The HF, SVWN5 and PBE methods show little basis set dependence for the barrier 

height (cf. Table 1). The HF method yields too high a barrier, while the SVWN5 method 

yields a stably bonded H3 (no barrier). The PBE results show an important improvement 

compared to the SVWN5 results, but the calculated barrier height remains too low. The 

hybrid PBE shows an improved barrier height (5.68 kcal/mol). Despite the good curvature and 

position of the barrier, the TPSS method yields too low a barrier height (less than 1 kcal/mol, 

cf. Table 1). Mixing the TPSS with 10% exact exchange17 yields marginally increased barrier 

height (by about 0.5 kcal/mol), and even 25% exact exchange mixing adds only 1.3 kcal/mol 

to the barrier height. As noted earlier,40 the self-interaction error causes the low barrier. 

Applying the Perdew-Zunger self interaction correction46 increases the barrier height obtained 

from GGA functionals by about 9-10 kcal/mol.40 

Finally we discuss in detail why the TPSS energy barrier for the reaction H2 + H → H + 

H2 is too low. Table 1 shows that, in TPSS, the energies of H and H2 are highly accurate, 

while the energy of the H3 transition state is too negative. TPSS has an exchange-correlation 

hole [57] that is localized around its electron, like the exact hole in H and H2. But in H3 there 

is just one ↓ electron, whose orbital and exchange hole are spread uniformly over three fairly 

distant nuclear centers, so the exact exchange-correlation hole is partly delocalized, resulting 

in a higher energy than the TPSS hole. Fixing the TPSS barrier probably requires using exact 

exchange, as in a hyper-GGA. 
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Table 1. Hydrogen atom total energies, E(H) (hartree), hydrogen molecule total energies, 

E(H2) (hartree), hydrogen molecule equilibrium distances, r(H-H) (Å), H3 energy, E(H3) 

(hartree), the H3 barrier distances, r1 = r2 (Å), and the classical hydrogen abstraction energy 

barriers (kcal/mol). 

Method E(H) E(H2) r(H-H) E(H3) r1 = r2 Barrier 
CCSD(T)/6-311++G(d,3pd)  -0.49982 -1.17253 0.7420 -1.65652 0.9304 9.93 
CCSD(T)/6-311G(d,3pd)  -0.49981 -1.17251 0.7420 -1.65643 0.9306 9.97 
CCSD(T)/6-311G(d,2pd)  -0.49981 -1.17231 0.7427 -1.65620 0.9300 9.99 
QCISD/6-311G(d,2pd)  -0.49981 -1.17231 0.7426 -1.65579 0.9300 10.25 
CCSD(T)/6-311G(d,2p)  -0.49981 -1.17082 0.7420 -1.65393 0.9296 10.48 
CCSD(T)/6-311G(d,p) -0.49981 -1.16834 0.7435 -1.65039 0.9290 11.14 
TPSS/6-311++G(d,3pd) -0.50004 -1.17985 0.7434 -1.67887 0.9318 0.64 
TPSS/6-311G(d,3pd) -0.49987 -1.17983 0.7433 -1.67876 0.9319 0.59 
TPSS/6-311G(d,2pd) -0.49987 -1.17982 0.7435 -1.67860 0.9324 0.68 
TPSS/6-311G(d,p) -0.49987 -1.17955 0.7441 -1.67783 0.9329 1.00 
PBE/6-311G(d,2pd) -0.49962 -1.16615 0.7507 -1.65985 0.9371 3.71 
PBEh/6-311G(d,2pd) -0.50104 -1.16849 0.7455 -1.66047 0.9300 5.68 
SWVN5/6-311++G(d,3pd)  -0.47851 -1.13728 0.7660 -1.62024 0.9496 -2.80 
SWVN5/6-311G(d,p) -0.47835 -1.13692 0.7670 -1.61963 0.9503 -2.74 
HF/6-311++G(d,3pd)  -0.49982 -1.13307 0.7343 -1.60488 0.9330 17.58 
HF/6-311G(d,p) -0.49981 -1.13249 0.7354 -1.60433 0.9340 17.55 
Expt..a -0.50000 -1.17447 0.7414   9.70 

a Ref. 56 and Ref 58. 
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7. Triplet first excited state of H2 

Normally, Kohn-Sham calculations with the ground state density functional predict only 

the ground state; the excited-state solutions are not meaningful in principle. However, an 

exception occurs when the excited-state solution satisfies the aufbau principle, with all 

occupied orbital energies below all unoccupied ones. In the latter case, an excited state is 

obtained as an extremum of the ground state functional.42,59,60 An example is the triplet first 

excited state of H2. For this state, it is clear that the aufbau principle must be satisfied in the 

limit R → ∞, where the 1σg↑ and 1σu↑ orbitals became degenerate, but we find that the aufbau 

principle is satisfied even around the shallow minimum of the binding curve and even at R= 

2.0 Å. 

Both the X 1Σg
+ and b 3Σu

+ states of the H2 molecule dissociate to the limit of H(1s) + 

H(1s). The full CI results show that ground state X 1Σg
+ arises from the configuration 

21 gσ while the b 3Σu
+ state results from the configuration ug σσ 11 . The b 3Σu

+  triplet state, 

according to Kolos and Wolniewicz,41 is predominantly repulsive except for a shallow vdW 

minimum around R(H-H) ≈ 4.1 Å with the estimated binding energy of about 4 cm−1. Other 

calculations,61,62 confirm the existence of a vdW minimum. 

Analysis of the binding energy curves shown in Figure 10 shows that the SVWN5 curve is 

quantitatively and qualitatively incorrect, showing a relatively steep minimum at R(H-H) ≈ 

3.3 Å. The deviation between the full CI and the SVWN5 curves is large; at R(H-H) = 5 Å, 

the full CI curve is well below the SVWN5 curve (by -0.04291 hartree), and consequently we 

have shifted the SVWN5 curve shown in Figure 10 by -0.04 hartree The PBE curve is 

improved considerably compared to the SVWN5 curve, showing a very shallow minimum at 

R(H-H) ≈ 4.1 Å, running very close to the full CI curve and slightly above it. The TPSS curve 

shows a further improvement, running closer to the full CI curve and showing an even more 

shallow minimum at R(H-H) ≈ 4.4 Å. Our tests show that these results are stable against 

increase of the basis set (vide infra). (Note that the TPSS binding curve of triplet H2 has been 

studied independently by V. N. Staroverov and E. R. Davidson, private communication). The 

full CI curve is used only as a qualitative reference because it was calculated with a relatively 

small basis set; however, it seems to be sufficient to show the improvements along the density 

functional ladder. Comparison of SVWN5 and PBE curves to those calculated with the aug-

cc-pVQZ basis set shows that the aug-cc-pVQZ curves run parallel to the 6-31G(d,p) curves, 

preserving the positions of the minima. Figure 11 shows the full CI, SVWN5, PBE, and TPSS 

relative binding energy curves (E(RH-H) - 2*E(H)) calculated with the aug-cc-pVQZ basis set. 
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While Figure 10 does not reveal the minimum of the full CI/6-311G(d,p) energy at R(H-H) ≈ 

4.1 Å, this minimum can be observed in Figure 11. The largest basis set dependence can be 

observed for the full CI relative binding energy curve; however, the SVWN5 curve also 

shows a considerable basis set dependence. The PBE and the TPSS functionals show 

considerably less basis set dependence; for example, the TPSS/6-311G(d,p) curve is parallel 

to the TPSS/6-311G(d,p)/aug-cc-pVQZ curve in the range of 3-4 Å H-H distance, as shown in 

Figure 12. At shorter distances the basis set effects are more important; however, they remain 

small for the PBE and TPSS functional. This is a very desirable behavior. 

We might imagine stabilizing the ↑↑ triplet state of H2 as a ground state by applying a 

strong uniform magnetic field that couples only to the spin. Then its binding energy curve 

would be expected to resemble that of two closed shell atoms, e.g., He2. In this sense, our 

study of triplet H2 is a prelude to our coming study of binding curves for the rare-gas dimers. 
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Figure 1. The H2

+  ground state (2Σg) binding energy curves (hartree) calculated with the 

HF, SVWN5, PBE, and TPSS methods using the 6-311G(d,p) basis set. The panel on the right 

shows the corresponding energy differences (in kcal/mol) of the SVWN5, PBE, and TPSS 

from the essentially exact Hartree-Fock curve. The H-H distance is in Å. (1 hartree = 627.5 

kcal/mol; 1 bohr = 0.5292 Å.) 
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Figure 2. The symmetric He2

+ ground state binding energy curve (hartree) calculated with 

CCSD(T), PBE, PBEh, TPSS, and TPSSh methods using the 6-311G(d,p) basis set. The 

interatomic distances are in Å. The exact nonrelativistic dissociation limit (R →∞)44,45 has the 

energy -4.904 hartree. 
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Figure 3. The LiH+ potential energy curves (hartree) calculated with CCSD(T), PBE, PBEh, 

TPSS, and TPSSh methods using the 6-311G(d,p) basis set. The interatomic distances are in 

Å. The exact nonrelativistic dissociation limit (Li+ … H with R →∞)44,45 has the energy -

7.780 hartree. (The CCSD(T) total energy misses 67% of the correlation energy of the Li+ 1s 

core due to basis set limitation, but this does not affect the shape of the curve).  
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Figure 4. Restricted and unrestricted CCSD(T), PBE, and TPSS/6-311G(d,p) potential energy 
curves of the dissociating H2 molecule, showing the spin symmetry breaking. The exact 
nonrelativistic dissociation limit (R →∞) has the energy -1.000 hartree. The H-H distance is 
in Å. 
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Figure 5. Restricted and unrestricted CCSD(T), PBE, and TPSS /6-311G(d,p) potential energy 

curves of the dissociating N2 molecule in its 1Σg
+ ground state molecule, showing the spin 

symmetry breaking. The exact nonrelativistic dissociation limit (R →∞)44,45 has the energy -

109.178 hartree. The N-N distance is in Å. 
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Figure 6. Full CI/6-31G(d) binding energy (hartree) curves (from Ref. 37) for the X 1Σg

+ and 

B 1Σg
+ states (noted as X and B, respectively) of dissociating C2 and the corresponding spin 

symmetry broken SSB UPBE/6-311G(d) and SSB UTPSS/6-311G(d) curves. The exact 

nonrelativistic dissociation limit (R →∞)44,45 has the energy -75.690 hartree. The C-C 

distance is in Å. 
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Figure 7. SSB UPBE/6-311G(d) and UTPSS/6-311G(d) errors (SSB density functional energy 

- reference, kcal/mol) in the binding energy curves for the dissociating ground state C2 

molecule. The reference is the full CI/6-31G(d) energy taken from Ref. 37, shifted to recover 

the exact nonrelativistic dissociation limit from the caption of Figure 6. The C-C distance is in 

Å.  The "non-parallelity error" around equilibrium is much larger for C2 than for LiH+, H2, N2, 

or the triplet excited state of H2. 

 



v2005.10.04. 22 

0.89

0.91

0.93

0.95

0.97

0.
89

0.
9

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

-0.0034

-0.0032

-0.0030

-0.0028

-0.0026

-0.0024

-0.0022

-0.0020

∆E

r2

r1

PBE-CCSD(T)

 

0.89

0.91

0.93

0.95

0.97

0.
89

0.
90

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

-0.02245

-0.02240

-0.02235

-0.02230

-0.02225

-0.02220

-0.02215

-0.02210

∆E

r2

r1

TPSS-CCSD(T)

 
Figure 8. Energy surface differences (hartree) relative to CCSD(T) for the H3 C∞v structure. r1 

and r2 are the two internuclear distances (Å). The 6-311++G(d,3pd) basis set was used for 

these calculations. 
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Figure 9. Symmetric (blue, r1 = r2) and asymmetric (pink, r1 + r2 = 1.86 Å) stretching energy 

curves (hartree) for the H3 C∞v structure. r1 and r2 are the two internuclear distances (Å).  Note 

that the asymmetric stretch is not the path that minimizes E for a given r1, since r2 is 

constrained to be 1.86 Å – r1. 
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Figure 10. Full CI, SVWN5, PBE, and TPSS/6-311G(d,p) energy curves for the H2 b 3Σu
+ 

triplet first excited state. Energy in hartree, R(H-H) in Å. The SVWN5 energy curve was 
shifted by -0.04 hartree.  The exact nonrelativistic dissociation limit is -1.000 hartree. 
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Figure 11. Full CI, SVWN5, PBE, and TPSS/aug-cc-pVQZ relative binding energy [E(RH-H) - 
2*E(H)] curves for the H2 b 3Σu

+ triplet first excited state. R(H-H) in Å. Note the shallow van 
der Waals minimum for each curve. 
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Figure 12. Full CI, SVWN5, PBE, and TPSS basis-set energy differences (Eaug-cc-pVQZ – E6-

311G(d,p)) in the relative binding energy curves for the H2 b 3Σu
+ triplet first excited state. R(H-

H) in Å.  
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