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We present the case for the nonempirical construction of density functional approximations for the
exchange-correlation energy by the traditional method of “constraint satisfaction” without fitting to
data sets, and present evidence that this approach has been successful on the first three rungs of
“Jacob’s ladder” of density functional approximations �local spin-density approximation �LSD�,
generalized gradient approximation �GGA�, and meta-GGA�. We expect that this approach will also
prove successful on the fourth and fifth rungs �hyper-GGA or hybrid and generalized random-phase
approximation�. In particular, we argue for the theoretical and practical importance of recovering the
correct uniform density limit, which many semiempirical functionals fail to do. Among the
beyond-LSD functionals now available to users, we recommend the nonempirical Perdew–Burke–
Ernzerhof �PBE� GGA and the nonempirical Tao–Perdew–Staroverov–Scuseria �TPSS� meta-GGA,
and their one-parameter hybrids with exact exchange. TPSS improvement over PBE is dramatic for
atomization energies of molecules and surface energies of solids, and small or moderate for other
properties. TPSS is now or soon will be available in standard codes such as GAUSSIAN, TURBOMOLE,

NWCHEM, ADF, WIEN, VASP, etc. We also discuss old and new ideas to eliminate the self-interaction
error that plagues the functionals on the first three rungs of the ladder, bring up other related issues,
and close with a list of “do’s and don’t’s” for software developers and users. © 2005 American
Institute of Physics. �DOI: 10.1063/1.1904565�

I. INTRODUCTION

Kohn–Sham spin-density functional theory1–4 is now the
most widely used method for electronic structure calcula-
tions in condensed matter physics and quantum chemistry,
providing useful predictions for atoms, molecules �including
biomolecules�, nanostructures, solids, and solid surfaces. A
recent study5 of the papers published and cited in the Physi-
cal Review family of journals 1893–2003 shows that the
three most-cited ones are all density functional theory papers
�Refs. 1, 6, and 7 in this work�. These data do not include the
myriad citations of this theory to and from chemistry jour-
nals, but citations from chemistry are included in another
datum:8 The most-cited physics paper published since the
beginning of 1994 is our Ref. 9, which presents the nonem-
pirical construction of a gradient-corrected density func-
tional. Moreover, of the five papers most cited by chemists in
2003, four are density functional theory papers.10

Kohn–Sham theory looks �and, more importantly, scales
with system size11� like a mean-field theory with a self-
consistent effective one-electron Schrödinger equation for
the Kohn–Sham orbitals, but includes, in principle, all corre-
lation effects on the ground-state electron density and total
energy. Useful extensions of the theory to thermal equilib-
rium at finite temperature and to excited or time-dependent

states have also been made.2,3 In principle, only the density
functionals for exchange and correlation remain to be ap-
proximated. The “due diligence” requirement of good sci-
ence demands some understanding of what these approxima-
tions are and how they are constructed, not only from the
developers but also from the users and even the opponents of
density functional theory.

We are writing this paper for all of these potential read-
ers to express our personal preferences and metaphysical
principles for the construction and selection of density func-
tional approximations. We will argue that the traditional non-
empirical approach of construction by “constraint
satisfaction”1,9,12–14 remains the most convincing, most uni-
versal, and most enduring one, making full use of the many
known exact constraints on the density functional for the
exchange-correlation energy. In this approach, the density
functional approximations are assigned to various rungs of
“Jacob’s ladder,”15 according to the number and kind of their
local ingredients. The lowest rung is the local spin-density
approximation of Kohn and Sham,1 the second rung is the
generalized gradient approximation, and so on. Higher rungs
are increasingly more complex. The best nonempirical func-
tional for a given rung is constructed to satisfy as many exact
theoretical constraints as possible while providing satisfac-
tory numerical predictions for real systems. Once a rung has
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been selected, there remains little choice about which con-
straints to satisfy �but greater freedom in how to satisfy
them�. Accuracy is expected to increase up the ladder as
additional local ingredients enable the satisfaction of addi-
tional constraints.

The strengths of density functional theory are practical-
ity, universality �for all electronic ground states�, and a
sound theoretical foundation. As complexity and accuracy
increase up Jacob’s ladder, conceptual simplicity and compu-
tational ease necessarily decrease. The required computa-
tional cost does not increase much from the first to the third
rung, but it increases rapidly on higher rungs, especially the
fifth. Thus the holy grail of density functional theory is not
just the fifth or highest rung, but the whole nonempirical
ladder.

At least on the first four rungs, the only known alterna-
tive to “constraint satisfaction” is “semiempirical
fitting,”16–20 in which the functionals are fitted to selected
data from experiment or from ab initio calculations. Of
course, the additional ingredients that arise at higher rungs of
Jacob’s ladder can also accommodate more fit parameters.
Functionals with as many as 21 fit parameters, violating
some of the most basic exact constraints, are especially
popular in chemistry. Our traditional view that the function-
als should be constructed with few empirical parameters and
preferably none is now a minority opinion for which we will
present a rationale. We will point to recent developments
which show the continuing power of the nonempirical con-
straint satisfaction approach and discuss possible future de-
velopments along the same general direction.

We disagree strongly with the suggestion that traditional
density functional theory is at an “impasse.” Progress is slow
but accelerating. It took 26 years to develop a successful
nonempirical second rung, and 12 more years to do the same
for the third rung. Each completed nonempirical rung is a
platform from which to construct the next. Progress will con-
tinue until and unless a real impasse is reached.

The developers of density functionals are somewhat like
the blind men who tried to describe the elephant in the well-
known fable. Each of us has hold of a different part of the
beast, and so describes it differently. Only by pooling our
information and synthesizing the parts will we develop a true
picture of the elephant.

II. IS DENSITY FUNCTIONAL THEORY AB INITIO?

Knowing quantum mechanics and Coulomb’s law for the
electron-electron interaction, we know almost everything we
need, in principle, for the description of atoms, molecules,
and solids. Numerical studies based upon the correlated
many-electron wave function can be ab initio, although com-
putationally intractable for large molecules or unit cells. The
underlying principles of quantum mechanics and Coulomb’s
law are accepted as universally valid and basic. This accep-
tance is itself grounded in experiment, as all good science is.

Starting from these principles, we can derive1,21 the
Kohn–Sham ground-state density functional theory and
prove that the ground-state exchange-correlation energy is a
functional of the total electron density n�r� or of the separate

up and down spin densities n↑�r� and n↓�r�. We can also
prove many exact properties �Sec. VI� of this functional to
constrain our approximation to it. But this functional is
known neither exactly nor as a systematic series of approxi-
mations converging in every case to the exact answer �the
highest expectation of a fully ab initio theory�.

So is density functional theory ab initio or semiempir-
ical? We suggest that it can fall in between as a nonempirical
theory when the functionals are constructed by constraint
satisfaction without empirical fitting. It is this middle way
that is advocated here.

Language that is now widely used tends to be contradic-
tory and confusing. Some papers distinguish between ab ini-
tio �wave function-based� and “density functional” calcula-
tions, suggesting in a subtle and perhaps unintentional way
that density functional theory is semiempirical. Other papers
refer to density functional calculations as “first principles” or
ab initio, but that is a long stretch when the underlying func-
tional has, for example, eight fit parameters, as does the
popular B3LYP,22 even though these parameters are fixed
once for all by a particular fitting to a given data set. �B3LYP
has one empirical parameter in its Becke exchange,17 four in
its LYP �Ref. 18� correlation, and three more in the hybrid-
ization with exact exchange�.

A fully ab initio �but practical� density functional ap-
proximation would be good for users but would terminate the
interest of many developers, as it would leave too little room
for creative play. A semiempirical density functional approxi-
mation, however, leaves too much room, encouraging an
“anything that works” attitude. Many popular functionals in-
cluding B3LYP are not exact even in the one limit �uniform
density� in which they could be. As Wordsworth said,
“Strange fits of passion have I known.”23 A nonempirical
density functional is most interesting from the developer’s
viewpoint, since its construction requires disciplined imagi-
nation and insight �as well as trial and error�.

Semiempirical fitting leaves unexplained all the data that
was fitted. It can make very accurate predictions for systems
and properties that are sufficiently similar to those fitted, but
can fail badly when the new systems and properties are suf-
ficiently different. In particular, higher-level functionals that
are fitted to molecular data can be far less accurate24 for the
bulk and surface properties of simple metals than even the
lowest-level functional, the local-spin density approximation.
Thus users who want reliable high accuracy for a broad
range of systems need a practical, high-level, nonempirical
functional.

A given rung of Jacob’s ladder �Sec. IV� is too restrictive
in form to be exact and must have intrinsic accuracy limits.
Thus fitting a given data set too closely can result in “over-
fitting.” There are two senses in which a semiempirical func-
tional of a given form can be overfitted. The first, which can
be avoided by a careful mathematical analysis, involves the
introduction of artificial zigs and zags that reduce the fitting
error, or the introduction of more parameters than are really
justified. For example, the three mixing parameters in the
B3PW91 �Ref. 25� or B3LYP �Ref. 22� hybrids can be
reduced26 to one27–30 without a significant overall error in-
crease, and the optimum value of this parameter to predict
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molecular atomization energies can even be rationalized.28

The second sense is the inevitable bias that arises in the
selection of a given fitting set and weights for this set.

In answer to a semi-humorous question from a semi-
empirical colleague, we admit that there are many nonfunda-
mental parameters in the analytic expression for the uniform-
gas correlation energy, and further such parameters on the
third rung of the nonempirical ladder. We regard the param-
eters needed to satisfy exact constraints �for functional forms
suited to satisfy such constraints� as nonempirical. There are
many similar parameters in nonempirical pseudopotentials.

One of the authors of this paper is old enough to recall
the history of the electron-ion pseudopotential in condensed
matter physics. The 1960s and 1970s saw the appearance of
many realistic semiempirical pseudopotentials. When accu-
rate nonempirical pseudopotentials became available,31 the
semiempirical ones quickly and permanently disappeared
from the literature. We expect the history of density func-
tional theory to follow a parallel course. Despite this expec-
tation, we observe that much has been and will continue to
be learned from semiempirical density functionals and from
those who develop them.

III. WHY THE UNIFORM DENSITY LIMIT IS
SACROSANCT

The paradigm density for condensed matter physics is
also one of the simplest possible ones, the uniform density in
which n↑�r� and n↓�r� are independent of position r. The
periodic valence-electron density in a bulk solid �especially a
simple metal� has some resemblance to this uniform density.
The earliest and simplest spin-density functional for the
exchange-correlation energy was the local spin-density
�LSD� approximation1

Exc
LSD�n↑,n↓� =� d3r n�xc

unif�n↑,n↓� , �1�

where �xc
unif�n↑ ,n↓� is the exchange-correlation energy per

particle of an electron gas with uniform spin densities n↑ and
n↓, known accurately from quantum Monte Carlo and other
many-electron methods.32 For accurate parametrizations of
�xc

unif�n↑ ,n↓�, see Refs. 33 and especially 34. By construction,
Eq. �1� is exact in the one limit in which it can be, namely,
the limit of uniform spin densities. This limit is preserved in
all nonempirical density functionals, but lost32 in many semi-
empirical ones which as a result can fail seriously for the
bulk and surface properties of simple metals.24

In our view, if an approximation fails to be essentially
exact for the limited class of systems where it can be, it is a
self-contradiction and should not underpin any major area of
science. The most widely used functional in quantum chem-
istry, B3LYP, underestimates the magnitude of the correla-
tion energy of the uniform gas by about 30% �Ref. 32� �as
inherited from the 50% underestimation of LYP�. In fact, the
original three-parameter hybrid proposed by Becke,25

B3PW91, was a semiempirical functional designed to be ex-
act for the uniform electron gas. B3LYP was later favored
because of its slightly better performance for a data set of

small molecules, although it is now clear that B3PW91 per-
forms better than B3LYP for large organic molecules.35

The correlation energy of the uniform electron gas is
divergent to second or higher finite order in the electron-
electron interaction, requiring an infinite resummation as in
the random phase approximation or coupled cluster method.
Thus density functionals built upon finite-order perturbation
theory will not be discussed further here.

The local spin-density approximation is so accurate for
solids that it is still widely used in condensed matter physics.
It is less useful for atoms and molecules, which bear less
resemblance to a uniform electron gas and are better de-
scribed by the functionals on higher rungs of Jacob’s ladder.
But even a practical chemist should respect the uniform den-
sity limit, since he or she may someday have to deal with a
molecule chemisorbed to the surface of a simple metal.

In fact, the relatively poor LSD atomization energies
have led to an undervaluation of LSD in chemistry. LSD
gives remarkably accurate bond lengths,35 and the errors of
its atomization energies can be dramatically reduced by in-
troducing one empirical parameter to represent the energy of
each free atom.36 For chemistry without free atoms, LSD is
not such a bad starting point.

IV. JACOB’S LADDER OF DENSITY FUNCTIONAL
APPROXIMATIONS

Although many generalizations of the LSD of Eq. �1�
were proposed, the first practical one was the generalized
gradient approximation �GGA�,9,13,17,18,37–41

Exc
GGA�n↑,n↓� =� d3r n�xc

GGA�n↑,n↓,�n↑,�n↓� , �2�

which introduces the density gradients �n↑�r� and �n↓�r� as
additional local ingredients or arguments of �xc

GGA. While
LSD is the first, GGA is the second rung of Jacob’s ladder.

The original motivation for Eq. �2� was the second-order
gradient expansion �GEA�,

Exc
GEA�n↑,n↓� =� d3r�n�xc

unif�n↑,n↓�

+ �
�,��

Cxc
����n↑,n↓�

�n� · �n��

n�
2/3n��

2/3 � , �3�

an expression valid for slowly varying densities. The coeffi-

cients Cxc
��� were derived in the hope that Eq. �3� would

improve upon LSD for real solids and even for molecules,
but this hope was disappointed. Langreth and Perdew12 iden-
tified the root of the problem, which was also the key to the
development of new functionals by the method of constraint
satisfaction as defined in the Introduction.

The exact exchange-correlation energy can be expressed
by the adiabatic connection or coupling constant
integration,42,43
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Exc�n↑,n↓� =
1

2
� d3r n�r� � d3r��

0

1

d�
nxc

� ��n↑,n↓�;r,r��
	r� − r	

.

�4�

We consider a series of systems having the same ground-
state density n�r�, different electron-electron repulsions
� / 	r�−r	 �where the coupling constant falls in the range 0
���1�, and corresponding external potentials v��r�. The
real system has �=1 and the Kohn–Sham noninteracting sys-
tem has �=0. In Eq. �4�, nxc

� ��n↑ ,n↓� ;r ,r�� is the density at
r� of the exchange-correlation hole surrounding an electron
at r,

nxc
� = nx + nc

�, �5�

where the exchange hole density nx is independent of �. Note
that nxc

� can be found from the correlated wave function for a
given �. The exact exchange-correlation hole has the follow-
ing key properties:14,42,43

� d3r� nx�r,r�� = − 1, �6�

� d3r� nc
��r,r�� = 0, �7�

nx�r,r�� � 0. �8�

The LSD hole, being the hole of a possible physical system
�the uniform electron gas�, satisfies Eqs. �6�–�8�, which con-
strain Eq. �4� to reasonable values. The LSD “on-top” hole
density nxc

�,LSD�r ,r� is also nearly exact.44 However, the GEA
hole, being only the expansion of a hole to second order in
�, has a spurious large 	r�−r	 behavior that violates Eqs.
�6�–�8�. Simple cutoffs that restore some or all of these con-
straints led to the first GGAs, which markedly improved the
calculated total and atomization energies of molecules.

Our recommended nonempirical GGA is that of Perdew,
Burke, and Ernzerhof �PBE�.9 It has two different deriva-
tions, one �which it shares with its PW91 twin,40 the first
completely nonempirical GGA� based upon satisfying the
constraints �6�–�8� on the system-averaged hole,41 and the
other based upon satisfying constraints on the exchange-
correlation energy itself.9 Revisions45–47 of PBE are con-
structed to satisfy at most only the second set of constraints,
not the first, and so are less convincing. These revisions typi-
cally work better than PBE for the atomization energies of
molecules �their target property�, but worse than PBE for
molecular bond lengths48,49 and for lattice constants and sur-
face energies of solids.24 �Note that the only constants
present in PBE, besides those in its LSD part, are fundamen-
tal constants.�

Adding the next natural set of local ingredients produces
the meta-GGA �Refs. 14, 19, and 50–54� or third rung of
Jacob’s ladder:

Exc
MGGA�n↑,n↓� =� d3r n

� �xc
MGGA�n↑,n↓,�n↑,�n↓,�

2n↑,�
2n↓,�↑,�↓� .

�9�

The Laplacians �2n��r� seem like the more natural next step,
since they appear in the fourth-order gradient expansion, but
the Kohn–Sham orbital kinetic energy densities,

���r� =
1

2 �
i

occ.

	��i��r�	2, �10�

which appear in the Taylor expansion of the exchange hole
density about 	r�−r	=0, are also �implicit� functionals of the
density and permit the satisfaction of more constraints �Sec.
VI� than the Laplacians do. They carry the same information
in the limit of a slowly varying density, since55

��
GEA = ��

unif +
1

72

	�n�	2

n�

+
1

6
�2n�, �11�

where ��
unif= 3

10�6�2�2/3n�
5/3.

The only nonempirical meta-GGA for exchange and cor-
relation is that of Tao, Perdew, Staroverov, and Scuseria
�TPSS�,54 which utilizes only �↑ and �↓ without �2n↑ and
�2n↓. It is constructed by satisfying only constraints on the
exchange-correlation energy, but we can probably “reverse-
engineer” TPSS exchange and correlation holes56 satisfying
the hole constraints of Eqs. �6�–�8�. Extensive numerical
tests35,57–64 of TPSS suggest that the nonempirical constraint
satisfaction approach continues to work on the meta-GGA
level, producing a functional that is fully competitive with
semiempirical ones. Compared to PBE, TPSS greatly im-
proves atomization energies for molecules and surface ener-
gies for solids.

LSD is a local and GGA is a semilocal functional of the
density. Meta-GGA is a semilocal functional of the density
and the occupied orbitals, which are readily available in any
Kohn–Sham-like calculation. Semilocal functionals are ex-
pected to work best when the exact exchange-correlation
hole is well localized around its electron, as it is in slowly
varying and in compact �e.g., spherical� electron densities.

Although we stress LSD and our own nonempirical gen-
eralizations of it, we note that some other nonempirical func-
tionals have been proposed. The first GGA, as proposed in
Ref. 13, was largely nonempirical. A meta-GGA for ex-
change, based not upon the uniform gas but upon the hydro-
gen atom, was proposed in Ref. 50. And a meta-GGA for
correlation, based in part upon the picture of a uniform gas
with an energy gap, was proposed in Ref. 65.

Higher rungs of Jacob’s ladder necessarily introduce a
more computationally challenging nonlocal functional of the
orbitals. The fourth rung adds as a local ingredient the exact
exchange energy density,
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�x��r� =
1

2
� d3r�

nx
��r,r��

	r� − r	

= −
1

2n��r� � d3r�
	�i

occ.
�i�

* �r��i��r��	2

	r� − r	
�12�

or any quantity such as the exact exchange energy that can
be found from it. The hyper-GGA �Refs. 15 and 66� is then

Exc
HGGA�n↑,n↓� =� d3r n

� �xc
HGGA�n↑,n↓,�n↑,�n↓,�↑,�↓,�x↑,�x↓� .

�13�

Semiempirical hyper-GGAs include the widely used global
hybrid functionals such as B3LYP, B3PW91, or PBE0 �Refs.
29 and 30� that mix a fixed fraction of exact exchange with
GGA exchange, and the local hybrids.67 Although the global
hybrid functionals can be remarkably accurate for molecules
and strongly inhomogeneous solids, they are theoretically
less than ideal because they do not satisfy any exact con-
straints that GGAs do not satisfy. We are working66 on
hyper-GGAs that at least retain all the exact features of the
TPSS meta-GGA; the simplest of these is the TPSS global
hybrid of Ref. 35.

The fifth and final rung of Jacob’s ladder utilizes all of
the Kohn–Sham orbitals, unoccupied as well as occupied. At
this level the adiabatic connection of Eq. �4� leads to
generalizations68–71 of the random phase approximation
�RPA� that obviate the need for electron gas data �in fact,
generating this data�, and also account for the long-range van
der Waals attraction between nonoverlapped electron densi-
ties. These generalizations are still based upon constraint sat-
isfaction, but at a higher level. A Kohn–Sham version of the
coupled cluster method72,73 is fully ab initio. Fifth rung func-
tionals require huge basis sets and are not yet practical for
general use.

Figure 1 shows Jacob’s ladder rising �half dream and
half reality� from the Hartree world of unrealistically weak
or missing bonding in five steps to the heaven of chemical

accuracy. Note that it is not only the higher rungs that have
value. The lower rungs may be less accurate, but they are
also simpler to understand and they require less program-
ming and computation time. The users are the “angels,” who
ascend or descend the ladder at will.

In our own nonempirical constructions, we try to follow
a conservative “do not reinvent the wheel” approach. Thus,
our functionals resemble Chinese boxes or Russian dolls:
LSD is inside the PBE GGA, PBE GGA is inside the TPSS
meta-GGA, and TPSS meta-GGA will probably be inside our
hyper-GGA.

From the nonempirical viewpoint, LSD and GGA are
controlled extrapolations from the slowly varying limit,
while meta-GGA and hyper-GGA are controlled interpola-
tions between the limits of slowly varying and compact one-
or two-electron densities �the paradigm densities for con-
densed matter physics and quantum chemistry, respectively�.
The remaining constraints “control” the extrapolation or in-
terpolation. We believe that the first three rungs are essen-
tially completed by the LSD, PBE, and TPSS functionals
respectively. We encourage users to report and compare their
results for all three of these functionals. Nonempirical func-
tionals on the fourth and fifth rungs remain to be developed
or adequately tested. Although the hybrid functionals on the
fourth rung are semiempirical, we can also recommend the
hybrids PBE0,29,30 	PBEh,74 and TPSSh,35 which satisfy
many exact constraints and have at most one fit parameter.

V. IS EXACT EXCHANGE NEEDED?

The use of a fraction of exact exchange was introduced25

into density functional approximations to improve the calcu-
lated atomization energies of molecules, but at a significant
computational cost. It was later shown19 that flexible func-
tional forms involving the kinetic energy density �VSXC
�Ref. 19�� were capable of yielding similar and even better
thermochemistry without exact exchange. However, this was
achieved at the cost of empirical parametrization. Now that
accurate atomization energies are predicted by a nonempiri-
cal density functional without exact exchange �TPSS�, do we
still need exact exchange in chemistry?

It seems that we do need exact exchange, or perhaps
self-interaction correction �Sec. VII�, to describe situations in
which the exact exchange-correlation hole has a long-range
component that cannot be captured by semilocal approxima-
tions such as LSD, GGA, or meta-GGA. The simplest ex-
ample is stretched H2

+ �a highly noncompact one-electron
density�, but less extreme and more practical examples are
moderately stretched molecules58 and the transition state of a
chemical reaction. The forward and reverse energy barriers
tend to be seriously underestimated in LSD. These errors are
typically reduced by about a factor of 2 in the PBE GGA or
the TPSS meta-GGA, but the remaining error is still far too
large for chemical kinetics.64 The progression from LSD to
PBE GGA to TPSS meta-GGA seems to show a consistent
and continuing reduction of error only for reactions that do
not involve a free H atom or H2 molecule. The hybrid func-
tionals that admix exact exchange, such as PBE0, achieve a
significant further reduction of the error, but are still far from

FIG. 1. Jacob’s ladder of density functional approximations to the
exchange-correlation energy.
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satisfactory. It appears that self-interaction correction can
significantly improve energy barriers.75 Perhaps a nonempiri-
cal hyper-GGA or an improved self-interaction correction
will solve this problem, and will also improve the description
of molecules containing transition-metal atoms where again
TPSS makes only a small improvement62 over PBE.

Because inclusion of exact exchange implies moving up
Jacob’s ladder, we expect hybrid and hyper-GGA functionals
to provide a better description for solids as well. Direct
evaluation of exact exchange for solids with metallic charac-
ter remains prohibitively expensive, but the recently devel-
oped screened Coulomb potential method74 for hybrid func-
tionals overcomes this obstacle with only a slight loss of
precision.

VI. SHORT SUMMARY OF KNOWN EXACT
CONSTRAINTS ON Exc†n_ ,n`‡

Here we will summarize some of the major known exact
constraints on Exc�n↑ ,n↓� and discuss whether or not they are
satisfied by approximate functionals. Size-consistency �ex-
tensivity� is of course a basic constraint, but one that is al-
ways satisfied by semilocal functionals. �Using as a local
ingredient an integrated property like N=
n�r�d3r or Ex as in
Ref. 76 can, however, violate size consistency.�

For the exchange energy, the spin-scaling relation77

Ex�n↑,n↓� =
1

2
Ex�2n↑� +

1

2
Ex�2n↓� �14�

�where Ex�n��Ex�n /2 ,n /2�� and the uniform-density scal-
ing relation78

Ex�n
� = 
Ex�n� �15�

�where n
�r�=
3n�
r�� are satisfied by all the density func-
tionals we know, whether nonempirical or semiempirical, as
is the upper bound Ex�n↑ ,n↓��0.

The Lieb–Oxford lower bound79,80 �expressed in terms
of a local density approximation�

Ex�n↑,n↓� � Exc�n↑,n↓� � 2.273Ex
LSD�n/2,n/2� �16�

for all possible spin densities is satisfied by LSD and by the
PBE GGA and TPSS meta-GGA. Most semiempirical func-
tionals can violate this bound for possible but unrealistic
densities. The bound is nonetheless important, and its satis-
faction for all densities has implications for real densities.

The correlation energy scales in the high-density limit to
a constant, as shown by Levy:81

lim

→�

Ec�n
� = const. �17�

This condition is violated by LSD and by many semiempir-
ical functionals, but satisfied by PBE GGA and TPSS meta-
GGA. In the low-density limit under uniform scaling �

→0�, correlation scales like exchange; within LSD, PBE
GGA, and TPSS meta-GGA, the spin-density functionals
Exc�n↑ ,n↓� properly become density functionals Exc�n� in this
limit.

For a uniform electron gas,32,34 LSD, PBE GGA, and
TPSS meta-GGA are all exact by construction, while many
semiempirical functionals are not. The nonempirical func-

tionals also have gradient expansions like Eq. �3� in the limit
of slowly varying densities. In LSD, the gradient coefficients
are all zero. PBE GGA and TPSS meta-GGA have correct
second-order gradient coefficients for correlation.12 The
TPSS meta-GGA has correct gradient coefficients for ex-
change through fourth order in �.82,83 LSD, PBE GGA, and
TPSS meta-GGA all have a reasonable linear response61 for
the uniform electron gas, although this is achieved in PBE
GGA by using a second-order gradient coefficient for ex-
change that is too big by a factor of 1.778.

For any one-electron density n1�r�, we know that7

Ex�n1,0� = − U�n1� � −
1

2
� d3r� d3r�

n1�r�n1�r��
	r� − r	

,

�18�

Ec�n1,0� = 0. �19�

In other words, the exchange energy of a fully spin-polarized
one-electron system is a self-interaction correction to the
Hartree-energy, and the correlation energy for such a system
vanishes. Because the right-hand side of Eq. �18� is a fully
nonlocal functional of the density, this constraint cannot be
satisfied on the first three rungs of Jacob’s ladder, although it
can be satisfied on the fourth rung by hyper-GGAs that use
full exact exchange. Equation �19� cannot be satisfied on the
first two rungs, but is satisfied by the TPSS meta-GGA on the
third rung.

The exact exchange potential, vxc��r�=Exc/n��r�, at
the nuclear cusp of the electron density is finite.84 This con-
dition, satisfied by LSD, is necessarily lost in GGA, but is
restored in the TPSS meta-GGA. The region around the
nucleus is one in which the density is dominated by a single
orbital shape and the reduced density gradient s
= 	�n	 /2�3�2�1/3n4/3 is small; these conditions can also hold
simultaneously near the centers of chemical bonds.

As a consequence of Eqs. �15� and �17�, the high-density
�
→�� limit of Exc�n↑ ,n↓� is the exact exchange energy
Ex�n↑ ,n↓�.

85 This condition can be satisfied on the fourth
rung of Jacob’s ladder by hyper-GGAs that use full exact
exchange. And so for that matter will any constraint on the
exchange energy.

There are also known constraints for nonuniform density
scaling,86 whether two-dimensional n


xy�x ,y ,z�
=
2n�
x ,
y ,z� or one-dimensional n


x�x ,y ,z�=
n�
x ,y ,z�,
which in the limit 
→� can produce a crossover from a
three- to a one- or two-dimensional electron density,
respectively.87

Except in the one-electron and high-density limits, the
most long-ranged parts of the exact exchange and correlation
holes tend to cancel,88 making Exc�n↑ ,n↓� less strongly non-
local than Ex�n↑ ,n↓�. Thus it is unacceptable to combine ex-
act exchange with meta-GGA correlation. Exact exchange
can only be combined with a fully nonlocal correlation, con-
structed on the fourth or fifth rungs of the ladder.
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VII. SELF-INTERACTION CORRECTION OF SEMI-
LOCAL FUNCTIONALS, AND HOW TO IMPROVE IT

The semilocal density functionals on the first three rungs
of Jacob’s ladder violate Eq. �18� and those on the first two
rungs also violate Eq. �19�. Simple functionals that work
well for many-electron systems cannot be exact for one-
electron systems. This problem was evident long ago within
LSD, and led Perdew and Zunger7 to propose a self-
interaction correction �SIC� to LSD or any other density
functional approximation �DFA�:

Exc
SIC-DFA�n↑,n↓� = Exc

DFA�n↑,n↓� − �
i�

occ.

�U�ñi�� + Exc
DFA�ñi�,0�� ,

�20�

where ñi��r�= 	�̃i��r�	2 is the density of an occupied orbital
�in general, not a Kohn–Sham orbital but some more local-
ized orbital constructed to minimize the self-interaction cor-
rected energy�. The SIC of Eq. �20� properly vanishes when
the original density functional approximation is exact. This
feature seems to be absent from a recently proposed alterna-
tive self-interaction correction to the one-electron
potential.89,90 However, even this feature does not make the
self-interaction correction to a given DFA unique, except in
the case of one-electron densities.

The Perdew–Zunger SIC has a long history of striking
successes and failures.91–93 It appears that elimination of self-
interaction error is often important, but that Eq. �20� is not
necessarily the best way to achieve this. In chemical appli-
cations, for example, the GGA seems to need only about
40% �Ref. 94� of the self-interaction correction presented in
Eq. �20� �although a simple scaling by 0.4 produces a func-
tional that is no longer exact for one-electron densities�. The
results of SIC calculations of reaction barriers show us that a
scaling factor of 0.5–0.7 is needed, depending on the reac-
tion type and functional.75,95 A systematic thermochemical
study96 shows that the Perdew–Zunger SIC indeed overcor-
rects beyond-LSD functionals.

There are also formal problems with Eq. �20�. If we find
localized orbitals for a uniform density, our SIC functional
will no longer be exact in the uniform or slowly varying
density limit. But if we find delocalized orbitals for a uni-
form density, then Eq. �20� will produce a “false surface
energy”91 for any finite jellium system.

An alternative self-interaction correction97 that avoids
these formal difficulties while scaling down the self-
interaction correction for many-electron densities is found by
introducing an effective orbital density at r� for an electron
of spin � at r, i.e.,

nr��r�� � − nx
��r,r�� , �21�

where nx
��r ,r�� is the exact exchange hole density, and not-

ing that 0���
W /���1, where �� is defined by Eq. �10� and

��
W= 	�n�	2 /8n� is the von Weizsäcker kinetic energy

density:

Exc
SIC-DFA�n↑,n↓� = Exc

DFA�n↑,n↓�

− �
�
� d3r � ��

W

��
k

n��r��U�nr��

+ Exc
DFA�nr�,0�� , �22�

where

U�nr�� =
1

2
� d3r�� d3r�

nr��r��nr��r��
	r� − r�	

�23�

and Exc
DFA�nr� ,0� involves integration over r�. For any one-

electron density of spin � , ��
W /��=1 and nr��r��=n��r��

=n�r��. To preserve the correct slowly varying limit requires
k�3 when the DFA is the TPSS meta-GGA. Within TPSS,
the correlation contribution to Eq. �22� vanishes. We must
have k�2 for the PBE GGA and k�1 for LSD.

Because nr��r�� of Eq. �21�, n��r�, and ���r� are invari-
ant under a unitary transformation of the occupied orbitals,
no localizing transformation is needed in the implementation
of the SIC-DFA of Eq. �22�. Moreover, the effective one-
electron Hamiltonian �with a nonmultiplicative potential� for
Eq. �22� is self-adjoint and its canonical orbitals are ortho-
normal. Although Eq. �22� may not be easy to implement, it
has these interesting and promising formal properties in
common with the meta- and hyper-GGAs.

Why think about a self-interaction correction to the
meta-GGA when the hyper-GGA will be exact for any one-
electron density? One answer is that the Perdew–Zunger SIC
of Eq. �20� provides a nearly correct description of fractional
particle number in a many-electron open system,98 and this
good description is not guaranteed in the hyper-GGA, which
could thereby fail �as do LSD, GGA, and meta-GGA� to
describe charge transfer correctly. A second answer is that
the SIC forms �20� and �22� do not require that �x

DFA repre-
sent the same choice of energy density as the exact �x.

VIII. OTHER ISSUES

A good density functional for the exchange-correlation
energy should produce a realistic integrated energy and a
realistic electron density. There is no reason to expect it to
produce any given energy density, since the energy density is
neither physical nor unique, although it can be useful for
other purposes.99–101 Energy density may be an issue for lo-
cal hybrids67 and hyper-GGAs.15,66

There is also no reason to expect the Kohn–Sham deter-
minant to display all the symmetries of the true wave func-
tion. Symmetry breaking in the spin densities is more
disturbing,102 but often has a simple physical
interpretation.103 Nor does a good density functional need to
produce the spin resolution of the correlation energy into
↑↑ , ↓↓, and ↑↓ contributions. In fact, a widely used spin
resolution is incorrect104 in the uniform-density limit.

An interesting recent development is the appearance of
tractable nonlocal density functionals that include the long-
range van der Waals interaction.105 It remains to be seen if
those functionals can be merged with the various functionals
on the first four rungs of Jacob’s ladder. There is also con-
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tinuing interest �e.g., Ref. 106� in the weighted density ap-
proximation, a nonempirical and fully nonlocal functional
that does not fit on Jacob’s ladder.

We also note in passing that the orbitals that minimize
the meta-GGA energy belong to a self-adjoint but nonmulti-
plicative effective one-electron Hamiltonian. However, it
seems to make little energetic difference if one uses instead a
multiplicative optimized effective potential107–113 or even the
PBE GGA potential. At the same time, proper inclusion of
exact exchange into the Kohn–Sham scheme via a multipli-
cative potential greatly improves the accuracy of single-
particle spectra114 and is expected to be important for time-
dependent and excited-state applications.115

There have been many other interesting developments in
density functional theory that are peripherally related to our
topic. For example, it is possible both numerically116 and
analytically117 to construct the exact Kohn–Sham potential
from the correlated wave function.118 Efforts have also been
made to combine correlated wave functions with density
functionals.119,120

IX. CONCLUSIONS

We have argued that density functional approximations
should be constructed nonempirically via the satisfaction of
known exact constraints �valid for all densities or for a large
class of them�, and that the uniform density limit in particu-
lar is a logically required constraint. We realize that this non-
empirical construction is a slow and uncertain process. It is
hard to get everything right, and impossible to do so on the
lower rungs of the ladder: for certain systems and properties,
users may want to employ semiempirical or fitted function-
als. In such cases, we recommend functionals that are correct
for the uniform electron gas and contain few fitted param-
eters, such as PBE0 or TPSSh. Even then, we believe that
results should also be reported for the nonempirical function-
als like LSD �in an accurate parametrization33,34�, PBE GGA,
and TPSS meta-GGA, as a measure of how much we really
understand and what remains to be understood.

Is there any secure place for empiricism in Kohn–Sham
density functional theory? One such place may be the fourth
rung of the ladder, where empiricism can tell us how much
exact exchange to mix with semilocal functionals. The local
or semilocal functionals on the first three rungs of the ladder
work as well as they do for molecules because there is a
strong cancellation between the full nonlocalities of ex-
change and correlation �except in special cases: one-electron
densities, high-density limit, etc.�. Becke’s argument25 tells
us that a residue of exchange-like full nonlocality survives
the cancellation, but not how much. A rationale28 can be
made for mixing 25% exact exchange with 75% GGA ex-
change, but this argument is itself based upon an empirical
observation. On the fourth rung, we believe that at least the
exact constraints satisfied on lower rungs should be pre-
served. Even here, we hope that empiricism can be com-
pletely avoided by modeling the adiabatic connection, some-
what as in Ref. 76. �Note, however, that limited empiricism
can provide a useful tack-on long-range van der Waals

correction121,122 to functionals on the lower rungs of the lad-
der, and perhaps a better general self-interaction correction
as discussed in Sec. VII.�

We close with some general “do’s and don’t’s.” Software
developers should take care to program and document den-
sity functionals correctly, and to update their codes with sig-
nificant new functionals. Superseded functionals �in the
sense that PW86 �Refs. 38 and 39� and PW91 �Ref. 40� are
superseded by PBE,9 and PKZB �Ref. 53� is superseded by
TPSS �Ref. 54�� should be allowed to retire gradually. Users
should not randomly mix and match functionals, but should
use exchange and correlation pieces designed to work to-
gether, with their designer-recommended local parts. They
should not shop indiscriminately for the functional that
“works best.” Users should always say which functional they
used, with its proper name and literature reference, and why
they chose it. Statements like “we used density functional
theory” or “we used the generalized gradient approximation”
are almost useless to a reader or listener who wants to repro-
duce the results.
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