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Semilocal density functionals for the exchange-correlation energy are needed for large electronic
systems. The Tao-Perdew-Staroverov-Scuseria (TPSS) meta-generalized gradient approximation
(meta-GGA) is semilocal and usefully accurate, but predicts too-long lattice constants. Recent
”GGA’s for solids” yield good lattice constants but poor atomization energies of molecules. We
show that the construction principle for one of them (restoring the density gradient expansion for
exchange over a wide range of densities) can be used to construct a ”revised TPSS” meta-GGA with
accurate lattice constants, surface energies, and atomization energies for ordinary matter.
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Kohn-Sham theory [1] is the method of choice to de-
scribe large many-electron systems in condensed matter
physics (since the 1970s) and quantum chemistry (since
the 1990s). In principle, this theory delivers the exact
ground-state spin densities n↑(r), n↓(r) and energy E
for N electrons in external potential v(r), via solution of
N selfconsistent one-electron Schroedinger equations. In
practice, simple and reasonably accurate approximations
to the density functional for the exchange-correlation en-
ergy are needed. Semilocal approximations (e.g., Refs.
[2–4]) of the form

Exc[n↑, n↓] =

∫
d3r nǫxc(n↑, n↓,∇n↑,∇n↓, τ↑, τ↓) (1)

require only a single integral over real space and so
are practical even for large molecules or unit cells. In
Eq. (1), n = n↑ + n↓ is the electron density and
τσ =

∑
i |∇ψiσ|

2/2 is the positive kinetic energy density;
all equations are in atomic units. Semilocal approxima-
tions often work because of proper accuracy for a slowly-
varying density, or because of justified error cancellation
between exchange and correlation [5] (requiring a short-
ranged xc hole). They can be reasonably accurate for the
near-equilibrium and compressed ground-state properties
of ”ordinary” matter, where neither strong correlation
nor long-range van der Waals interaction are important.
They can also serve as a base for the computationally
more-expensive fully nonlocal approximations needed to
describe strongly-correlated systems [5] and soft matter
[6].

Semi-local functionals should be exact for the uniform
electron gas, and should satisfy the spin- and coordinate-
scaling properties of the exchange term Ex. The earliest
one, the local spin density approximation (LSDA) [1, 2],
uses only the ingredients n↑ , n↓ and predicts reasonable
but too-short lattice constants for solids, good surface en-
ergies for simple metals (but with substantial error can-

cellation between exchange and correlation), and molecu-
lar atomization energies that are unacceptably high. The
nonempirical Perdew-Burke-Ernzerhof (PBE) GGA [3]
adds the ingredients ∇n↑, ∇n↓, and uses them to recover
the gradient expansion for the correlation energy Ec of
a slowly-varying density, to make the correlation energy
scale properly to a constant in the high-density limit, and
to satisfy other constraints. PBE predicts reasonable but
too-long lattice constants, surface energies that are better
than LSDA for exchange alone and correlation alone but
worse for their sum, and improved atomization energies.
The nonempirical TPSS meta-GGA [4] adds the ingredi-
ents τ↑, τ↓, and uses them to recover the fourth-order gra-
dient expansion for exchange in the slowly-varying limit,
to make the functional exact for the energy (but not for
the potential) of all one-electron ions, to make the ex-
change potential finite at the nucleus, etc. TPSS predicts
lattice constants that are only a little shorter than those
of PBE, good surface energies, and very good atomiza-
tion energies [4, 7]. The bond lengths of stiff molecules
are accurate [7] in TPSS. A meta-GGA fitted to molec-
ular data is M06-L [8].

Meta-GGA is not computationally much more expen-
sive than LSDA or GGA, once a selfconsistent program
(e.g., Refs. [7] and [9]) has been written. For molecules
containing transition-metal atoms, TPSS is only 30%
slower [9] than PBE. By respecting the paradigms of both
condensed matter physics and quantum chemistry, the
TPSS meta-GGA was intended to be a workhorse semilo-
cal functional for both, and in particular for molecules
bonded to or reacting on solid surfaces. Perhaps due to
its lattice-constant errors, TPSS has not been so widely
adopted. Because of the sensitivity of many solid state
properties (magnetism, ferroelectricity [10], bulk modu-
lus, etc.) to lattice constant, recent years have seen in-
stead the emergence of ”GGA’s for solids” (e.g., AM05
[11] and PBEsol [12]) which typically predict good lattice
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constants and surface energies, but rather poor atomiza-
tion energies.

The construction principle for the PBEsol GGA for
solids [12] was to restore the second-order gradient expan-
sion for exchange over a wide range of densities. Here we
will show that this principle can be imposed to make a re-
vised TPSS (revTPSS) meta-GGA that preserves all the
correct constraints of TPSS, keeps its good surface and
atomization energies, but yields lattice constants as good
as those of the GGA’s for solids. We hope that revTPSS
can become the workhorse functional that TPSS was in-
tended to be.

We begin with the semilocal exchange energy of a spin-
unpolarized density [4]:

Esl
x [n] =

∫
d3r nǫunif

x (n)Fx(p, z). (2)

Here ǫunif
x (n) = −3(3π2n)1/3/4π is the exchange en-

ergy per electron of a uniform gas of density n, p =
s2 is the square of the reduced density gradient s =
|∇n|/[2(3π2n)1/3n], and z = τW /τ where τW =
|∇n|2/8n is the von Weizsäcker kinetic energy density
and τ = τ↑ + τ↓. The exchange enhancement factor Fx

is 1 in LSDA, and otherwise 1 + κ− κ/(1 + x/κ), where
κ = 0.804. For a slowly-varying density, x is small and
of order ∇2, making Fx ≈ 1+x. In GGA, x = µp, where
µ = 0.21951 in PBE and 10/81 = 0.12346 in PBEsol.
In meta-GGA, x depends upon z as well as p, and only
its slowly-varying asymptote is (10/81)p, but the large-
p asymptote of Fx, 1 + κ − κ2/µp, is independent of z.
As in Ref. [4], we introduce α = (τ − τW )/τunif =
(5p/3)(z−1 − 1), where τunif = n(3/10)(3π2n)2/3 is the
orbital kinetic energy density of the uniform gas. Any
one- or two-electron density has z = 1 or α = 0, while a
slowly-varying density has small z ≈ 5p/3 and α ≈ 1.

In the TPSS meta-GGA, x of the previous paragraph
is given by Eq. (10) of Ref. [4]. For α ≈ 1 we can make
the meta-GGA Fx more like that of PBEsol through two
changes : (1) Change a term in x from cz2p/(1 + z2)2 to
cz3p/(1 + z2)2, which shifts this term (whose coefficient
c is much larger than a typical gradient coefficient) from
6th to 8th order in the gradient expansion. All TPSS ex-
change constraints remain satisfied, without any change
in the coefficients c, e, and µ. Fx is unchanged for α = 0,
and at large s for all α, but is reduced at small s for
α = 1. The energy is raised more for a molecule (which
has more regions of small s) than for the component
atoms. (2) Now change µ from its TPSS (and PBE)
value 0.21951 toward its PBEsol value 10/81, letting c
and e adjust accordingly to satisfy all TPSS constraints.
Fig. 1 shows a good emulation of PBEsol by µ = 0.14,
c = 2.35204 and e = 2.1677, over the range of physi-
cal importance 0 < s < 3, and especially for s < 1 where
the second-order gradient expansion for exchange is valid
[12, 13]. Reducing µ reduces Fx at large s, raising the
energy more for the component atoms (which have more
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FIG. 1: Exchange enhancement factor vs. reduced density
gradient for the PBEsol GGA and for two meta-GGAs at
α = 1. The slowly-varying limit is α ≈ 1 and s ≈ 0. By
construction, revTPSS is closer to PBEsol than TPSS is.

regions of large s) than for the molecule. The net effect
of these two changes is to decrease atomization energies
slightly, on average, and to increase surface energies.

While the exact exchange energy is unique, the ex-
act exchange energy density is not. The conventional
choice based on the Fock integral of the Kohn-Sham
orbitals is just the λ = 1 member of a one-parameter
(0.5 ≤ λ ≤ 1) family of exact exchange energy densi-
ties, based upon a simple coordinate transformation [14],
which all agree for uniform densities but not for nonuni-
form ones. All have the same system-averaged exchange
hole [15]. Figure 2 for the hydrogen atom shows that
the choice λ = 0.893 closely matches the revTPSS en-
ergy density of Eq. 2. Thus revTPSS has two refer-
ence systems in which it reproduces an exact exchange-
correlation energy density: the uniform gas (a paradigm
for condensed matter) and the one-electron atom or ion
(a paradigm for quantum chemistry). (The same state-
ment is true of TPSS [16].) Kohn and Mattsson [17] pro-
posed supplementing the uniform gas reference system by
one in which the density decays evanescently, but their
second reference system was the Airy gas and not the
hydrogen atom. AM05 [11] exchange was constructed in
part by fitting the conventional exchange energy density
of the Airy gas [18]. Knowing the exact exchange energy
density in the revTPSS or TPSS gauge may be useful for
the construction of hyper-GGA’s [5, 16].

Having improved TPSS exchange, we now refine TPSS
correlation. PBE and TPSS (through its ingredient
ǫPBE
c (n↑, n↓,∇n↑,∇n↓)) use a correlation gradient co-

efficient β = 0.06675 derived in the high-density limit by
Ma and Brueckner [19]. Langreth and Vosko [20] have
derived a more correct value about 17% bigger, but the
difference comes from a long-range contribution to the
gradient expansion of the correlation hole that would be
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FIG. 2: Radial exchange energy density for the hydrogen
atom. The revTPSS curve is from a spin-scaled Eq. (2). Two
λ-dependent exact exchange energy densities are also shown;
the conventional one is λ = 1.

cut off by our underlying real-space cutoff construction
[21] of PBE. We do not in any case need to restore the
correct gradient coefficient for correlation, since for real
densities the second-order gradient expansion for the cor-
relation energy is never even close to being valid [12, 13].
However, Hu and Langreth [22] have derived the density-
dependence of the Ma-Brueckner β beyond the random
phase approximation, which is relevant to our cutoff con-
struction and which we have fitted roughly (Fig. 3) by

β(rs) = 0.066725(1 + 0.1rs)/(1 + 0.1778rs), (3)

where n = 3/(4πr3s). Eq. (3) is designed so that, for
rs → ∞, the second-order gradient terms for exchange
and correlation cancel by innocuous assumption. The
reduction of β with rs increases atomization energies
slightly, on average, and decreases surface energies. Aside
from our use of Eq. (3), we keep the form of TPSS corre-
lation unchanged, satisfying the TPSS constraints with

C(ζ, 0) = 0.59 + 0.9269ζ2 + 0.6225ζ4 + 2.1540ζ6, (4)

which replaces Eq. (13) of Ref. [4].
We turn now to the results, which are summarized

briefly in Table 1 (in terms of the mean error or ME and
the mean absolute error or MAE, or their relative analogs
MRE and MARE) and in full detail (along with figures
for revTPSS Fx and Fxc) in Ref. [23]. Table I shows
the error statistics of several density functionals for the
lattice constants of 21 solids , in comparison with exper-
imental values corrected to a static lattice, calculated as
in Ref. [24] using the BAND [25] code. The 21 solids in-
clude 11 metals (Li, Na, Ca, Sr, Ba, Al, Pb, Cu, Rh, Pd,
Ag) and 10 nonmetals (C diamond, Si, SiC, Ge, GaAs,
NaCl, NaF, LiCl, LiF, MgO). Our test set is the same as
that of Ref. [24], except that we have here omitted the
three softest solids (K, Rb, Cs), for which the revTPSS
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FIG. 3: Finite-range contribution to the gradient coefficient
for correlation, as a function of density parameter rs, from
Ref. [22] and from Eq. (3).

lattice constants are about 0.10-0.15 Å too long. K, Rb,
and Cs have bulk moduli (4 to 2 GPa [24]) close to those
of the rare-gas solids Xe, Kr, and Ar [26] (and less than
1% of that of diamond), and so could be classified as ”soft
matter” where the long-range van der Waals interaction
between large ion cores can significantly shrink the lat-
tice constant; we plan to investigate this in future work.
Table I shows that revTPSS performs about as well (and
actually better) than the ”GGA’s for solids”, PBEsol and
AM05. Larger data sets [27] show error statistics similar
to ours for the functionals that preceded revTPSS. Af-
ter the lattice constants, Table I reports some cohesive
energy results for solids.

Table I also shows the error statistics for the exchange-
and exchange-correlation surface energies for jellium,
computed as in Ref. [12], in comparison to the exact ex-
change and nearly-exact revTPSS exchange-correlation
values for bulk densities with rs = 2, 3, 4, and 6. Again,
revTPSS performs well. Its very accurate surface ex-
change energies reflect [12, 13] its correct recovery of the
gradient expansion for exchange.

In Table I, we present the error statistics for the six at-
omization energies ( SiH4, SiO, S2, C3H4, C2H2O2, C4H4

) of the small representative AE6 [28] set and the 223 en-
thalpies of formation of the G3 [29] set, computed selfcon-
sistently using a modified Gaussian code [30]. Note that,
by construction, the error of the enthalpy of formation
is nearly equal and opposite to that of the atomization
energy. The revTPSS values are good, and even a little
better on average than the TPSS values. For the 47 G3
pure hydrocarbons, the MAE drops from 5.9 (TPSS) to
3.1 (revTPSS) kcal/mol.

Finally, as a check on hydrogen bonds, we have applied
revTPSS to the W6 set [31] of dissociation energies of
six small water clusters (four dimers, two trimers). The
revTPSS error statistics (ME=-1.0 kcal/mol, MAE=1.0
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TABLE I: Error statistics for various density functionals, as
explained in the text. (0.5292 Å= 1 bohr. 1 kcal/mol=0.0434
eV = 0.00159 hartree.) The exact jellium surface exchange-
correlation energy is still imprecisely known. We have taken
it to be the revTPSS value, although it could instead be the
TPSS value as in Ref. [12]. The non-revTPSS lattice con-
stants are from Ref. [24]. Most non-revTPSS surface ener-
gies and atomization energies are from Ref. [12]. The non-
revTPSS enthalpies of formation are from Ref. [7].

LSDA PBE TPSS AM05 PBEsol revTPSS

lattice constants (Å) of 21 solids

ME -0.079 0.054 0.033 0.014 -0.010 0.011

MAE 0.079 0.065 0.047 0.039 0.038 0.036

cohesive energies of 9 non-transition

metals and 5 insulators (eV/atom)

ME 0.35 -0.09 – – 0.13 0.01

MAE 0.35 0.10 – – 0.15 0.11

jellium surface exchange energies (%)

for rs = 2, 3, 4, 6

MRE 45.8 -20.9 -11.9 28.8 2.9 -1.0

MARE 45.8 20.9 11.9 28.8 2.9 2.2

jellium surface exchange-correlation energies (%)

for rs = 2, 3, 4, 6

MRE -2.9 -5.6 -0.8 0.6 -0.4 0.0

MARE 2.9 5.6 0.9 0.9 1.2 0.0

atomization energies (kcal/mol)

of the 6 AE6 molecules (6-311+G(3df,2p))

ME 77.4 12.4 4.1 38.7 35.9 3.3

MAE 77.4 15.5 5.9 38.7 35.9 5.9

enthalpies of formation (kcal/mol)

of the 223 G3 molecules (6-311+G(3df,2p))

ME -121.9 -21.7 -5.1 – – -3.6

MAE 121.9 22.2 5.7 – – 4.8

kcal/mol) are only slightly worse than those of TPSS
(ME=-0.9 kcal/mol, MAE=0.9 kcal/mol), but not as
good as those of PBE (ME=-0.0 kcal/mol, MAE=0.3
kcal/mol). In the original TPSS, µ was set to the PBE
0.21951 out of concern for the hydrogen bonds. Note
that the inclusion of long-range van der Waals interac-
tion could at least reduce the revTPSS error statistics for
the W6 set.

Stereoelectronic effects on the energies of hydrocarbons
are actually better described [32] by PBEsol than by PBE
or TPSS. We plan to test revTPSS for these problems.

In summary, we have shown that the PBEsol idea
[12], restoring the second-order gradient expansion for
exchange over a wide range of densities, can be applied
to the TPSS meta-GGA [4], leading to a revised version
(revTPSS) with good lattice constants, surface energies
and atomization energies. revTPSS could well become a
workhorse semilocal density functional for the ordinary
matter of condensed matter physics and quantum chem-

istry, as well as a base for the construction of fully non-
local approximate functionals.
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