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We present the case for the nonempirical construction of density functional approximations for the
exchange-correlation energy by the traditional method of “constraint satisfaction” without fitting
to data sets, and present evidence that this approach has been successful on the first three rungs
of “Jacob’s ladder” of density functional approximations (local spin-density approximation or LSD,
generalized gradient approximation or GGA, and meta-GGA). We expect that this approach will
also prove successful on the fourth and fifth rungs (hyper-GGA and generalized random-phase
approximation). In particular, we argue for the theoretical and practical importance of recovering
the correct uniform density limit, which many semiempirical functionals fail to do. Among the
beyond-LSD functionals now available to users, we recommend the nonempirical Perdew—Burke—
Ernzerhof (PBE) GGA and the nonempirical Tao—Perdew—Staroverov—Scuseria (TPSS) meta-GGA,
and their one-parameter hybrids with exact exchange. TPSS improvement over PBE is dramatic
for atomization energies of molecules and surface energies of solids, and small or moderate for other
properties. TPSS is now or soon will be available in standard codes like Gaussian, Turbomole,
NWChem, ADF, WIEN, etc. We also discuss old and new ideas to eliminate the self-interaction
error that plagues the functionals on the first three rungs of the ladder, bring up other related issues,

and close with a list of “do’s and don’t’s” for software developers and users.

I. INTRODUCTION

Kohn-Sham spin density functional theory'™ is now
the most widely-used method for electronic structure
calculations in condensed matter physics and quan-
tum chemistry, providing useful predictions for atoms,
molecules, nanostructures, solids, and solid surfaces.
This theory looks (and, more importantly, scales with
system size®) like a mean-field theory with a self-
consistent effective one-electron Schrodinger equation for
the Kohn—Sham orbitals, but includes in principle all cor-
relation effects on the ground-state electron density and
total energy. Useful extensions of the theory to thermal
equilibrium at finite temperature and to excited or time-
dependent states have also been made.?® In principle,
only the density functionals for exchange and correla-
tion remain to be approximated. The “due diligence”
requirement of good science demands some understand-
ing of what these approximations are and how they are
constructed, not only from the developers but also from
the users and even the opponents of density functional
theory.

We are writing this article for all of these potential
readers to express our personal preferences and meta-
physical principles for the construction and selection of
density functional approximations. We will argue that
the traditional nonempirical approach of construction by
“constraint satisfaction”!®® remains the most convinc-

ing, most universal, and most enduring one, making full
use of the many known exact constraints on the den-
sity functional for the exchange-correlation energy. In
this approach, the density functional approximations are
assigned to various rungs of “Jacob’s ladder”,!? accord-
ing to the number and kind of their local ingredients.
The lowest rung is the local spin density approximation
of Kohn and Sham,! the second rung is the generalized
gradient approximation, and so on. Higher rungs are
increasingly more complex. The best nonempirical func-
tional for a given rung is constructed to satisfy as many
exact theoretical constraints as possible while providing
satisfactory numerical predictions for real systems. Once
a rung has been selected, there remains little choice about
which constraints to satisfy (but greater freedom in how
to satisfy them). Accuracy is expected to increase up the
ladder as additional local ingredients enable the satisfac-
tions of additional constraints.

Aside from Coulomb perturbation theory (which fails
for metals), the only known alternative to “constraint
satisfaction” is “semiempirical fitting”,'*~!% in which the
functionals are fitted to selected data from experiment
or from ab initio calculations. Of course, the additional
ingredients that arise at higher rungs of Jacob’s ladder
can also accommodate more fit parameters. Function-
als with as many as 21 fit parameters, violating some of
the most basic exact constraints, are especially popular
in chemistry. Our traditional view that the functionals



should be constructed with few empirical parameters and
preferably none is now a minority opinion for which we
will present a rationale. We will point to recent develop-
ments which show the continuing power of the nonempir-
ical constraint satisfaction approach and discuss possible
future developments along the same general direction.

II. IS DENSITY FUNCTIONAL THEORY AB
INITIO?

Knowing quantum mechanics and Coulomb’s law for
the electron-electron interaction, we know almost every-
thing we need in principle for the description of atoms,
molecules and solids. Numerical studies based upon the
correlated many-electron wave function can be ab initio,
although computationally intractable for large molecules
or unit cells. The underlying principles of quantum me-
chanics and Coulomb’s law are accepted as universally
valid and basic. This acceptance is itself grounded in
experiment, as all good science is.

Starting from these principles, we can derive:'6 the
Kohn-Sham ground-state density functional theory and
prove that the ground-state exchange-correlation energy
is a functional of the total electron density n(r) or of the
separate up and down spin densities n4(r) and ny(r). We
can also prove many exact properties (Section VI) of this
functional, to constrain our approximation to it. But this
functional is known neither exactly nor as a systematic
series of approximations converging in every case to the
exact answer (the highest expectation of a fully ab initio
theory).

So is density functional theory ab initio or semiempir-
ical? We suggest that it can fall in between as a nonem-
pirical theory when the functionals are constructed by
constraint satisfaction without empirical fitting. It is this
middle way that is advocated here.

Language that is now widely used tends to be contra-
dictory and confusing. Some articles distinguish between
ab initio (wave function-based) and “density functional”
calculations, suggesting in a subtle and perhaps uninten-
tional way that density functional theory is semiempiri-
cal. Other papers refer to density functional calculations
as “first principles” or ab initio, but that is a long stretch
when the underlying functional has, for example, eight fit
parameters like the popular B3LYP,'” even though these
parameters are fixed once for all by a particular fitting to
a given data set. (B3LYP has one empirical parameter in
its Becke exchange,!'? five in its LYP'? correlation, and
three more in the hybridization with exact exchange).

A fully ab initio density functional approximation
would be good for users but uninteresting for develop-
ers, as it would leave too little room for creative play.
A semiempirical density functional approximation, how-
ever, leaves too much room, encouraging an “anything
that works” attitude. Many popular functionals includ-
ing B3LYP are not exact even in the one limit (uniform
density) in which they could be. As Wordsworth said,

“Strange fits of passion have I known”.'® A nonempir-
ical density functional is most interesting from the de-
veloper’s viewpoint, since its construction requires disci-
plined imagination and insight (as well as trial and error).

“Semiempirical fitting” leaves unexplained all the data
that was fitted. It can make very accurate predictions
for systems and properties that are sufficiently similar to
those fitted, but can fail badly when the new systems and
properties are sufficiently different. In particular, higher-
level functionals that are fitted to molecular data can be
far less accurate'® for the bulk and surface properties of
simple metals than even the lowest-level functional, the
local-spin density approximation. Thus users who want
reliable high accuracy for a broad range of systems need
a high-level nonempirical functional.

A given rung of Jacob’s ladder (Section IV) is too re-
strictive in form to be exact and must have intrinsic ac-
curacy limits. Thus fitting a given data set too closely
can result in “overfitting”. There are two senses in which
a semiempirical functional of a given form can be overfit-
ted. The first, which can be avoided by a careful math-
ematical analysis, involves the introduction of artificial
zigs and zags that reduce the fitting error, or the intro-
duction of more parameters than are really justified. For
example, the three mixing parameters in the B3PW912°
or B3LYP!7 hybrids can be reduced?' to one??2% with-
out a significant overall error increase, and the optimum
value of this parameter to predict molecular atomization
energies can even be rationalized.?* The second sense is
the inevitable bias that arises in the selection of a given
fitting set and weights for this set.

One of the authors of this article is old enough to recall
the history of the electron-ion pseudopotential in con-
densed matter physics. The 1960s and 1970s saw the
appearance of many realistic semiempirical pseudopoten-
tials. When accurate nonempirical pseudopotentials be-
came available,2® the semiempirical ones quickly and per-
manently disappeared from the literature. We expect the
history of density functional theory to follow a parallel
course.

III. WHY THE UNIFORM DENSITY LIMIT IS
SACROSANCT

The paradigm density for condensed matter physics is
also one of the simplest possible ones, the uniform den-
sity in which n4(r) and n (r) are independent of position
r. The periodic valence-electron density in a bulk solid
(especially a simple metal) has some resemblance to this
uniform density. The earliest and simplest spin-density
functional for the exchange-correlation energy was the
local spin density (LSD) approximation®

BP0, )] = / Erne™(ngny), (1)

where £l (ny,n;) is the exchange-correlation energy

per particle of an electron gas with uniform spin den-



sities ny and n, known accurately from quantum Monte
Carlo and other many-electron methods.?” For an accu-
rate parametrization of Eumf(nT, n,), see Ref. 28. By con-
struction, Eq. (1) is exact in the one limit in which it can
be, the limit of uniform spin densities. This limit is pre-
served in all nonempirical density functionals, but lost?7
in many semiempirical ones which as a result can fail
seriously for the bulk and surface properties of simple
metals.!?

In our view, if an approximation fails to be essentially
exact for the limited class of systems where it can be,
it is a self-contradiction and should not underpin any
major area of science. The most widely-used functional
in quantum chemistry, B3LYP, underestimates the mag-
nitude of the correlation energy of the uniform gas by
about 30%27 (as inherited from the 50% underestimation
of LYP). In fact, the original three-parameter hybrid pro-
posed by Becke,?® B3PW91, was a semiempirical func-
tional designed to be exact for the uniform electron gas.
B3LYP was later favored because of its slightly better
performance for a data set of small molecules, although
it is now clear that B3PW91 performs better than B3LYP
for large organic molecules.?’

The local spin density approximation is so accurate
for solids that it is still widely used in condensed matter
physics. It is less useful for atoms and molecules, which
bear less resemblance to a uniform electron gas and are
better described by the functionals on higher rungs of Ja-
cob’s ladder. But even a practical chemist should respect
the uniform density limit, since he or she may someday
have to deal with a molecule chemisorbed to the surface
of a simple metal.

In fact, the relatively poor LSD atomization energies
have led to an undervaluation of LSD in chemistry. LSD
gives remarkably accurate bond lengths,?® and the errors
of its atomization energies can be dramatically reduced
by introducing one empirical parameter to represent the
energy of each free atom.?® For chemistry without free
atoms, LSD is not such a bad starting point.

IV. JACOB’S LADDER OF DENSITY
FUNCTIONAL APPROXIMATIONS

Although many generalizations of the LSD of Eq. (1)
were proposed, the first practical one was the generalized
gradient approximation (GGA)":%12:13,31-35

Egf M ng,ny] = /d3rn6GGA(n¢,m,VnT,Vm), (2)

which introduces the density gradients Vn4(r) and
Vn,(r) as additional local ingredients or arguments of
e8GA  While LSD is the first, GGA is the second rung

XC

of Jacob s ladder.
The original motivation for Eq. (2) was the second-

order gradient expansion (GEA)
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an expression valid for slowly-varying densities. The coef-
ficients C77" were derived in the hope that Eq. (3) would
improve upon LSD for real solids and even for molecules,
but this hope was disappointed. Langreth and Perdew®
identified the root of the problem, which was also the key
to the development of new functionals by the method of
constraint satisfaction as defined in the Introduction.

The exact exchange-correlation energy can be ex-
pressed by the adiabatic connection or coupling constant
integration®-37

Exc [nTa nl]

- %/d?’rn(r)/dST’/old/\ Pl

We consider a series of systems having the same ground-
state density n(r), different electron-electron repulsions
A/|r" —r| (where the coupling constant falls in the range
0 < XA < 1), and corresponding external potentials
va(r). The real system has A = 1 and the Kohn-
Sham non-interacting system has A = In Eq.(4),
n.([n4,n,];r,r') is the density at r’ of the exchange-
correlation hole surrounding an electron at r

nTzn\L];r:rl) ) (4)

v —r|

ni‘c = ny, + ng‘, (5)

where the exchange hole density ny is independent of .
Note that n). can be found from the correlated wave
function for a given A. The exact exchange-correlation
hole has the following key properties:®36:37

/d%’ na (') = —1, (6)

/d3r' n)(r,r') =0, )
ny(r,r') <0. (8)

The LSD hole, being the hole of a possible physical sys-
tem (the uniform electron gas), satisfies Eqs. (6)—(8),
which constrain Eq. (4) to reasonable values. The LSD

“on-top” hole density n);"SP(r,r) is also nearly exact.3®
However, the GEA hole being only the expansion of a
hole to second order in V, has a spurious large |’ —r|
behavior that violates Eqs. (6)—(8). Simple cutoffs that
restore some or all of these constraints led to the first
GGAs, which markedly improved the calculated total
and atomization energies of molecules.

Our recommended nonempirical GGA is that of
Perdew, Burke and Ernzerhof (PBE).? It has two dif-
ferent derivations, one (which it shares with its PW91
twin,?* the first completely nonempirical GGA) based



upon satisfying the constraints (6)—(8) on the system-
averaged hole,?> and the other based upon satisfying
constraints on the exchange-correlation energy itself.?
Revisions®*~4! of PBE satisfy only the second set of con-
straints, not the first, and so are less convincing. These
revisions typically work better than PBE for the atom-
ization energies of molecules (their target property), but
worse than PBE for molecular bond lengths??43 and for
lattice constants and surface energies of solids.!®

Adding the next natural set of local ingredients pro-
duces the meta-GGA8®:144448 or third rung of Jacob’s
ladder:

EMGGA [, ) = / d*rn (9)

MGGA

XC

XE (nT,ni,VnT,Vni,V%zT,V2n¢,TT,T¢).
The Laplacians V?n,(r) seem like the more natural next
step, since they appear in the fourth-order gradient ex-
pansion, but the Kohn—-Sham orbital kinetic energy den-
sities,

occ.

() = 3 3 Vi (1), (10)

which appear in the Taylor expansion of the exchange
hole density about |r' —r| = 0, are also (implicit) func-
tionals of the density and permit the satisfaction of more
constraints (Section VI) than the Laplacians do. They
carry the same information in the limit of a slowly-
varying density, since®?

1|Vn.? 1
_ + —

GEA unif
T, =T +
7 7 72 ng 6

Vin,, (11)

where 7unif = 13—0(67r2)2/3n§/3.

The only nonempirical meta-GGA for exchange and
correlation is that of Tao, Perdew, Staroverov and Scuse-
ria (TPSS),*® which utilizes only 7+ and 7| without V?n
and V2n,. It is constructed by satisfying only constraints
on the exchange-correlation energy, but we can proba-
bly “reverse-engineer” TPSS exchange and correlation
holes®® satisfying the hole constraints of Eqs. (6)—(8).
Extensive numerical tests?®%1758 of TPSS suggest that
the nonempirical “constraint satisfaction” approach con-
tinues to work on the meta-GGA level, producing a func-
tional that is fully competitive with semiempirical ones.
Compared to PBE, TPSS greatly improves atomization
energies for molecules and surface energies for solids.

LSD is alocal and GGA is a semi-local functional of the
density. Meta-GGA is a semi-local functional of the den-
sity and the occupied orbitals, which are readily available
in any Kohn-Sham-like calculation. Semi-local function-
als are expected to work best when the exact exchange-
correlation hole is well-localized around its electron, as
it is in slowly-varying and in compact (e.g., spherical)
electron densities.

Higher rungs of Jacob’s ladder necessarily introduce a
more computationally challenging nonlocal functional of
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FIG. 1: Jacob’s ladder of density functional approximations
to the exchange-correlation energy.

the orbitals. The fourth rung adds as a local ingredient
the exact exchange energy density

1 ng(r,r')
Exd(r) = §/d37'lﬁ (12)
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or any quantity such as the exact exchange energy that
can be found from it. The hyper-GGA'%% is then

EHGGA[p, )] = /d3rn

XEECGGA(nT, ng, VnT, Vni, Tty Tl Exty Exi)- (13)
Semiempirical hyper-GGAs include the widely-used
global hybrid functionals like B3LYP, B3PW91 or
PBE0?%23 that mix a fixed fraction of exact exchange
with GGA exchange, and the local hybrids.®® Although
the global hybrid functionals can be remarkably accu-
rate for molecules and strongly inhomogeneous solids,
they are theoretically less than ideal because they do not
satisfy any exact constraints that GGAs do not satisfy.
We are working on nonempirical hyper-GGAs that use
100% of exact exchange with a compatible fully-nonlocal
correlation.??

The fifth and final rung of Jacob’s ladder utilizes all of
the Kohn—Sham orbitals, unoccupied as well as occupied.
At this level the adiabatic connection of Eq. (4) leads to
generalizations®' %4 of the random phase approximation
(RPA) that obviate the need for electron gas data (in
fact, generating this data), and also account for the long-
range van der Waals attraction between non-overlapped



electron densities. These generalizations are still based
upon constraint satisfaction, but at a higher level.

Figure 1 shows Jacob’s ladder rising (half dream and
half reality) from the Hartree world of unrealistically
weak or missing bonding in five steps to the heaven of
chemical accuracy. Note that it is not only the higher
rungs that have value. The lower rungs may be less ac-
curate, but they are also simpler to understand and they
require less programming and computation time.

In our own nonempirical constructions, we try to fol-
low a conservative “don’t re-invent the wheel” approach.
Thus, our functionals resemble Chinese boxes or Russian
dolls: LSD is inside the PBE GGA, PBE GGA is inside
the TPSS meta-GGA, and TPSS meta-GGA will proba-
bly be inside our hyper-GGA.

From the nonempirical viewpoint, LSD and GGA are
controlled eztrapolations from the slowly-varying limit,
while meta-GGA and hyper-GGA are controlled interpo-
lations between the limits of slowly-varying and compact
one- or two-electron densities (the paradigm densities for
condensed matter physics and quantum chemistry, re-
spectively). The remaining constraints “control” the ex-
trapolation or interpolation. We believe that the first
three rungs are essentially completed by the LSD, PBE
and TPSS functionals respectively. We encourage users
to report and compare their results for all three of these
functionals. Nonempirical functionals on the fourth and
fifth rungs remain to be developed or adequately tested.
Although the hybrid functionals on the fourth rung are
semiempirical, we can also recommend the PBEQ,>?23
wPBE,%® and TPSSh?°® hybrids, which satisfy many ex-
act constraints and have at most one fit parameter.

V. IS EXACT EXCHANGE NEEDED?

The wuse of a fraction of exact exchange was
introduced?® into density functional approximations to
improve the calculated atomization energies of molecules,
at a significant computational cost. It was later shown'*
that flexible functional forms involving the kinetic en-
ergy density (VSXC!) were capable of yielding simi-
lar and even better thermochemistry without exact ex-
change. However, this was achieved at the cost of em-
pirical parametrization. Now that accurate atomization
energies are predicted by a nonempirical density func-
tional without exact exchange (TPSS), do we still need
exact exchange in chemistry?

It seems that we do need exact exchange, or perhaps
self-interaction correction (Section VII), to describe situ-
ations in which the exact exchange-correlation hole has a
long-range component that cannot be captured by semi-
local approximations like LSD, GGA, or meta-GGA. The
simplest example is stretched H;‘ (a highly noncompact
one-electron density), but less extreme and more practi-
cal examples are moderately stretched molecules®® and
the transition state of a chemical reaction. The forward
and reverse energy barriers tend to be seriously under-

estimated in LSD. These errors are typically reduced by
about a factor of two in the PBE GGA or the TPSS
meta-GGA, but the remaining error is still far too large
for chemical kinetics.?”->® The progression from LSD to
PBE GGA to TPSS meta-GGA seems to show a consis-
tent and continuing reduction of error only for reactions
that do not involve a free H atom or Hy molecule. The
hybrid functionals that admix exact exchange, such as
PBEQ, achieve a significant further reduction of the error,
but are still far from satisfactory. It appears that self-
interaction correction can significantly improve energy
barriers.®® Perhaps a nonempirical hyper-GGA or an im-
proved self-interaction correction will solve this problem,
and will also improve the description of molecules con-
taining transition-metal atoms where again TPSS makes
only a small improvement®® over PBE.

Because inclusion of exact exchange implies moving up
Jacob’s ladder, we expect hybrid and hyper-GGA func-
tionals to provide better description for solids as well.
Direct evaluation of exact exchange for solids with metal-
lic character remains prohibitively expensive, but the re-
cently developed screened Coulomb potential method®
for hybrid functionals overcomes this obstacle with only
a slight loss of precision.

VI. SHORT SUMMARY OF KNOWN EXACT
CONSTRAINTS ON Ey[n;,n,]

Here we will summarize some of the major known ex-
act constraints on FEyc[n+,n;] and discuss whether or
not they are satisfied by approximate functionals. Size-
consistency is of course a basic constraint, but one that
is always satisfied by semi-local functionals. (Making
the functional depend upon an integrated property like
N = [ drn(r) can however violate size-consistency.)

For the exchange energy, the spin-scaling relation®”

1 1
EX[nT,ni] = §Ex[2nT] + §EX[2n¢] (14)
(where Ex[n] = Ex[n/2,n/2]) and the uniform-density
scaling relation®®

Ey[n,] = vEx[n] (15)

[where n,(r) = v3n(yr)] are satisfied by all the density
functionals we know, whether nonempirical or semiem-
pirical, as is the upper bound Ex[n4,n;] < 0.

The Lieb—Oxford lower bound%™ (expressed in terms
of a local density approximation)

E.[nt,n)] > Exc[ny,ny] > 2.273E5P[n/2,n/2]  (16)

for all possible spin densities is satisfied by LSD and by
the PBE GGA and TPSS meta-GGA. Most semiempiri-
cal functionals can violate this bound for possible but un-
realistic densities. The bound is nonetheless important,
and its satisfaction for all densities has implications for
real densities.



The correlation energy scales in the high-density limit
to a constant, as shown by Levy:"!

lim E.[n,] = const. (17)

yY—>00

This condition is violated by LSD and by many semiem-
pirical functionals, but satisfied by PBE GGA and TPSS
meta-GGA. In the low-density limit under uniform scal-
ing (v — 0), correlation scales like exchange; within LSD,
PBE GGA and TPSS meta-GGA, the spin-density func-
tionals Ey.[ns,n;] properly become density functionals
Eyc[n] in this limit.

For a uniform electron gas,?”?® LSD, PBE GGA, and
TPSS meta-GGA are all exact by construction, while
many semiempirical functionals are not. The nonempiri-
cal functionals also have gradient expansions like Eq. (3)
in the limit of slowly-varying densities. In LSD, the gra-
dient coefficients are all zero. PBE GGA and TPSS meta-
GGA have correct second-order gradient coefficients for
correlation.® The TPSS meta-GGA has correct gradient
coefficients for exchange through fourth order in V.77
LSD, PBE GGA, and TPSS meta-GGA all have a rea-
sonable linear response®® for the uniform electron gas,
although this is achieved in PBE GGA by using a second-
order gradient coefficient for exchange that is too big by
a factor of 1.778.

For any one-electron density n(r), we know that™

Ex[nl,O] = —U n1

——/d3 /d3'"1 _r|), (18)

E.[ny,0] = (19)

In other words, the exchange energy of a fully spin-
polarized one-electron system is a self-interaction correc-
tion to the Hartree-energy, and the correlation energy for
such a system vanishes. Because the right hand side of
Eq. (18) is a fully nonlocal functional of the density, this
constraint cannot be satisfied on the first three rungs
of Jacob’s ladder, although it can be satisfied on the
fourth rung by hyper-GGAs that use full exact exchange.
Eq. (19) cannot be satisfied on the first two rungs, but is
satisfied by the TPSS meta-GGA on the third rung.

The exact exchange potential, vxes (r) = 6 Exc/dng(r),
at the nuclear cusp of the electron density is finite.”
This condition, satisfied by LSD, is necessarily lost in
GGA, but is restored in the TPSS meta-GGA. The region
around the nucleus is one in which the density is domi-
nated by a single orbital shape and the reduced density
gradient s = |Vn|/2(372)"/3n*/? is small; these condi-
tions can also hold simultaneously near the centers of
chemical bonds.

As a consequence of Egs. (15) and (17), the high-
density (y — oo) limit of Exc[ns,n,] is the exact ex-
change energy Fx[n4,n;]. This condition can be satisfied
on the fourth rung of Jacob’s ladder by hyper-GGAs that
use full exact exchange. And so for that matter will any
constraint on the exchange energy.

constraints for non-
whether two-dimensional

There are also known
uniform density scaling,®

nﬁy(z,y,z) = 'an('yw,'yy,.z) or on.e—d.imensional
ni(z,y,2) = yn(yz,y,2), which in the limit v — oo

can produce a crossover from a three- to a one- or
two-dimensional electron density, respectively.””

Except in the one-electron and high-density limits, the
most long-ranged parts of the exact exchange and cor-
relation holes tend to cancel,”® making Ey.[ns,n] less
strongly nonlocal than Ey[n4,n;]. Thus it is unaccept-
able to combine exact exchange with meta-GGA correla-
tion. Exact exchange can only be combined with a fully
nonlocal correlation, constructed on the fourth or fifth

rungs of the ladder.

VII. SELF-INTERACTION CORRECTION OF
SEMI-LOCAL FUNCTIONALS, AND HOW TO
IMPROVE IT

The semi-local density functionals on the first three
rungs of Jacob’s ladder violate Eq. (18) and those on the
first two rungs also violate Eq. (19). Simple functionals
that work well for many-electron systems cannot be exact
for one-electron systems. This problem was evident long
ago within LSD, and led Perdew and Zunger™ to propose
a self-interaction correction (SIC) to LSD or any other
density functional approximation (DFA):

Eg P g, ny] = Eg™ng.ny
occ.
—Z [fio] + BT M [7245,0]),  (20)
where 75 (r) = |di (r)[? is the density of an occupied

orbital (in general, not a Kohn-Sham orbital but some
more localized orbital constructed to minimize the self-
interaction corrected energy). The SIC of Eq. (20) prop-
erly vanishes when the original density functional approx-
imation is exact. This feature seems to be absent from a
recently proposed alternative self-interaction correction
to the one-electron potential.”:80

The Perdew—Zunger SIC has a long history of striking
successes and failures.?1=83 It appears that elimination of
self-interaction error is often important, but that Eq. (20)
is not necessarily the best way to achieve this. In chem-
ical applications, for example, the GGA seems to need
only about 40%3* of the self-interaction correction pre-
sented in Eq. (20) (although a simple scaling by 0.4 pro-
duces a functional that is no longer exact for one-electron
densities). The results of SIC calculations of reaction bar-
riers show us that a scaling factor of 0.5-0.7 is needed, de-
pending on the reaction type and functional %685 A gys-
tematic thermochemical study®® shows that the Perdew—
Zunger SIC indeed overcorrects beyond-LSD functionals.

There are also formal problems with Eq. (20). If we
find localized orbitals for a uniform density, our SIC func-
tional will no longer be exact in the uniform or slowly-
varying density limit. But if we find delocalized orbitals



for a uniform density, then Eq. (20) will produce a “false
surface energy”®! for any finite jellium system.

An alternative self-interaction correction®” that avoids
these formal difficulties while scaling down the self-
interaction correction for many-electron densities is
found by introducing an effective orbital density at r’
for an electron of spin ¢ at r, i.e.,

Neo (r') = —nZ(r,1'), (21)

where nZ(r,r') is the exact exchange hole density, and
noting that 0 < 7% /7, < 1, where 7, is defined by
Eq. (10) and 7%V = |Vn,|?/8n, is the von Weizsiicker
kinetic energy density:

ERXOP™ g, ny] = ERMng,n)] (22)
TW k
—Z/d3r (;L) N6 (r) {Ulnee] + Eof* e, 0] }
where
_ 1 3,0 3.1 Mo (T)ne (1)
Ulne| = 2/d r /d r TR (23)

and EPFA[n,,,0] involves integration over r'. For any
one-electron density of spin o, 77V /7, = 1 and nyy (r') =
ny(r') = n(r'). To preserve the correct slowly-varying
limit requires £ > 3 when the DFA is the TPSS meta-
GGA. Within TPSS, the correlation contribution to
Eq. (22) vanishes. We must have k£ > 2 for the PBE
GGA and k£ > 1 for LSD.

Because n,,(r') of Eq. (21), n,(r), and 7,(r) are in-
variant under a unitary transformation of the occupied
orbitals, no localizing transformation is needed in the
implementation of the SIC-DFA of Eq. (22). More-
over, the effective one-electron Hamiltonian (with a non-
multiplicative potential) for Eq. (22) is self-adjoint and
its canonical orbitals are orthonormal. Although Eq. (22)
may not be easy to implement, it has these interest-
ing and promising formal properties in common with the
meta- and hyper-GGAs.

Why think about a self-interaction correction to the
meta-GGA when the hyper-GGA will be exact for any
one-electron density? Omne answer is that the Perdew—
Zunger SIC of Eq. (20) provides a nearly correct de-
scription of fractional particle number in a many-electron
open system,®® and this good description is not guaran-
teed in the hyper-GGA, which could thereby fail (like
LSD, GGA and meta-GGA) to describe charge transfer
correctly.

VIII. OTHER ISSUES

A good density functional for the exchange-correlation
energy should produce a realistic integrated energy and
a realistic electron density. There is no reason to expect
it to produce any given energy density, since the energy
density is neither physical nor unique, although it can be

useful for other purposes.®?~! Energy density may be an
issue for local hybrids®® and hyper-GGAs.!%:59

There is also no reason to expect the Kohn-Sham
determinant to display all the symmetries of the true
wave function. Symmetry breaking in the spin densi-
ties is more disturbing,®? but often has a simple physical
interpretation.®® Nor does a good density functional need
to produce the spin resolution of the correlation energy
into 11, |J, and 1 contributions. In fact, a widely-used
spin resolution is incorrect? in the uniform-density limit.

An interesting recent development is the appearance
of tractable nonlocal density functionals that include the
long-range van der Waals interaction.?® It remains to be
seen if those functionals can be merged with the various
functionals on the first four rungs of Jacob’s ladder.

We also note in passing that the orbitals that min-
imize the meta-GGA energy belong to a self-adjoint
but non-multiplicative effective one-electron Hamilto-
nian. However, it seems to make little energetic differ-
ence if one uses instead a multiplicative optimized effec-
tive potential?®?” or even the PBE GGA potential. At
the same time, proper inclusion of exact exchange into
the Kohn-Sham scheme via a multiplicative potential
greatly improves the accuracy of single-particle spectra®
and is expected to be important for time-dependent and
excited-state applications.

IX. CONCLUSIONS

We have argued that density functional approxima-
tions should be constructed nonempirically via the satis-
faction of known exact constraints (valid for all densities
or for a large class of them), and that the uniform density
limit in particular is a logically required constraint. We
realize that this nonempirical construction is a slow and
uncertain process, and that for certain systems and prop-
erties the users will want to employ semiempirical or fit-
ted functionals. In such cases, we recommend functionals
that are correct for the uniform electron gas and contain
few fitted parameters, such as the PBEO or TPSSh hy-
brids. Even then, we believe that results should also be
reported for the nonempirical functionals like LSD, PBE
GGA, and TPSS meta-GGA, as a measure of how much
we really understand and what remains to be understood.

We close with some general “do’s and don’t’s”. Soft-
ware developers should take care to program and docu-
ment density functionals correctly, and to update their
codes with significant new functionals. Superseded func-
tionals (in the sense that PW86%2:33 and PW914 are su-
perseded by PBE?) should be allowed to retire gradually.
Users should not randomly mix and match functionals,
but should use exchange and correlation pieces designed
to work together, with their designer-recommended lo-
cal parts. They should not shop indiscriminately for the
functional that “works best”. Users should always say
which functional they used, with its proper name and
literature reference, and why they chose it. Statements



like “we used density functional theory” or “we used the
generalized gradient approximation” are almost useless
to a reader or listener who wants to reproduce the re-
sults.
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