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ase for the nonempiri
al 
onstru
tion of density fun
tional approximations for theex
hange-
orrelation energy by the traditional method of \
onstraint satisfa
tion" without �ttingto data sets, and present eviden
e that this approa
h has been su

essful on the �rst three rungsof \Ja
ob's ladder" of density fun
tional approximations (lo
al spin-density approximation or LSD,generalized gradient approximation or GGA, and meta-GGA). We expe
t that this approa
h willalso prove su

essful on the fourth and �fth rungs (hyper-GGA and generalized random-phaseapproximation). In parti
ular, we argue for the theoreti
al and pra
ti
al importan
e of re
overingthe 
orre
t uniform density limit, whi
h many semiempiri
al fun
tionals fail to do. Among thebeyond-LSD fun
tionals now available to users, we re
ommend the nonempiri
al Perdew{Burke{Ernzerhof (PBE) GGA and the nonempiri
al Tao{Perdew{Staroverov{S
useria (TPSS) meta-GGA,and their one-parameter hybrids with exa
t ex
hange. TPSS improvement over PBE is dramati
for atomization energies of mole
ules and surfa
e energies of solids, and small or moderate for otherproperties. TPSS is now or soon will be available in standard 
odes like Gaussian, Turbomole,NWChem, ADF, WIEN, et
. We also dis
uss old and new ideas to eliminate the self-intera
tionerror that plagues the fun
tionals on the �rst three rungs of the ladder, bring up other related issues,and 
lose with a list of \do's and don't's" for software developers and users.I. INTRODUCTIONKohn{Sham spin density fun
tional theory1{4 is nowthe most widely-used method for ele
troni
 stru
ture
al
ulations in 
ondensed matter physi
s and quan-tum 
hemistry, providing useful predi
tions for atoms,mole
ules, nanostru
tures, solids, and solid surfa
es.This theory looks (and, more importantly, s
ales withsystem size5) like a mean-�eld theory with a self-
onsistent e�e
tive one-ele
tron S
hr�odinger equation forthe Kohn{Sham orbitals, but in
ludes in prin
iple all 
or-relation e�e
ts on the ground-state ele
tron density andtotal energy. Useful extensions of the theory to thermalequilibrium at �nite temperature and to ex
ited or time-dependent states have also been made.2,3 In prin
iple,only the density fun
tionals for ex
hange and 
orrela-tion remain to be approximated. The \due diligen
e"requirement of good s
ien
e demands some understand-ing of what these approximations are and how they are
onstru
ted, not only from the developers but also fromthe users and even the opponents of density fun
tionaltheory.We are writing this arti
le for all of these potentialreaders to express our personal preferen
es and meta-physi
al prin
iples for the 
onstru
tion and sele
tion ofdensity fun
tional approximations. We will argue thatthe traditional nonempiri
al approa
h of 
onstru
tion by\
onstraint satisfa
tion"1,6{9 remains the most 
onvin
-

ing, most universal, and most enduring one, making fulluse of the many known exa
t 
onstraints on the den-sity fun
tional for the ex
hange-
orrelation energy. Inthis approa
h, the density fun
tional approximations areassigned to various rungs of \Ja
ob's ladder",10 a

ord-ing to the number and kind of their lo
al ingredients.The lowest rung is the lo
al spin density approximationof Kohn and Sham,1 the se
ond rung is the generalizedgradient approximation, and so on. Higher rungs arein
reasingly more 
omplex. The best nonempiri
al fun
-tional for a given rung is 
onstru
ted to satisfy as manyexa
t theoreti
al 
onstraints as possible while providingsatisfa
tory numeri
al predi
tions for real systems. On
ea rung has been sele
ted, there remains little 
hoi
e aboutwhi
h 
onstraints to satisfy (but greater freedom in howto satisfy them). A

ura
y is expe
ted to in
rease up theladder as additional lo
al ingredients enable the satisfa
-tions of additional 
onstraints.Aside from Coulomb perturbation theory (whi
h failsfor metals), the only known alternative to \
onstraintsatisfa
tion" is \semiempiri
al �tting",11{15 in whi
h thefun
tionals are �tted to sele
ted data from experimentor from ab initio 
al
ulations. Of 
ourse, the additionalingredients that arise at higher rungs of Ja
ob's ladder
an also a

ommodate more �t parameters. Fun
tion-als with as many as 21 �t parameters, violating some ofthe most basi
 exa
t 
onstraints, are espe
ially popularin 
hemistry. Our traditional view that the fun
tionals



2should be 
onstru
ted with few empiri
al parameters andpreferably none is now a minority opinion for whi
h wewill present a rationale. We will point to re
ent develop-ments whi
h show the 
ontinuing power of the nonempir-i
al 
onstraint satisfa
tion approa
h and dis
uss possiblefuture developments along the same general dire
tion.II. IS DENSITY FUNCTIONAL THEORY ABINITIO?Knowing quantum me
hani
s and Coulomb's law forthe ele
tron-ele
tron intera
tion, we know almost every-thing we need in prin
iple for the des
ription of atoms,mole
ules and solids. Numeri
al studies based upon the
orrelated many-ele
tron wave fun
tion 
an be ab initio,although 
omputationally intra
table for large mole
ulesor unit 
ells. The underlying prin
iples of quantum me-
hani
s and Coulomb's law are a

epted as universallyvalid and basi
. This a

eptan
e is itself grounded inexperiment, as all good s
ien
e is.Starting from these prin
iples, we 
an derive1,16 theKohn{Sham ground-state density fun
tional theory andprove that the ground-state ex
hange-
orrelation energyis a fun
tional of the total ele
tron density n(r) or of theseparate up and down spin densities n"(r) and n#(r). We
an also prove many exa
t properties (Se
tion VI) of thisfun
tional, to 
onstrain our approximation to it. But thisfun
tional is known neither exa
tly nor as a systemati
series of approximations 
onverging in every 
ase to theexa
t answer (the highest expe
tation of a fully ab initiotheory).So is density fun
tional theory ab initio or semiempir-i
al? We suggest that it 
an fall in between as a nonem-piri
al theory when the fun
tionals are 
onstru
ted by
onstraint satisfa
tion without empiri
al �tting. It is thismiddle way that is advo
ated here.Language that is now widely used tends to be 
ontra-di
tory and 
onfusing. Some arti
les distinguish betweenab initio (wave fun
tion-based) and \density fun
tional"
al
ulations, suggesting in a subtle and perhaps uninten-tional way that density fun
tional theory is semiempiri-
al. Other papers refer to density fun
tional 
al
ulationsas \�rst prin
iples" or ab initio, but that is a long stret
hwhen the underlying fun
tional has, for example, eight �tparameters like the popular B3LYP,17 even though theseparameters are �xed on
e for all by a parti
ular �tting toa given data set. (B3LYP has one empiri
al parameter inits Be
ke ex
hange,12 �ve in its LYP13 
orrelation, andthree more in the hybridization with exa
t ex
hange).A fully ab initio density fun
tional approximationwould be good for users but uninteresting for develop-ers, as it would leave too little room for 
reative play.A semiempiri
al density fun
tional approximation, how-ever, leaves too mu
h room, en
ouraging an \anythingthat works" attitude. Many popular fun
tionals in
lud-ing B3LYP are not exa
t even in the one limit (uniformdensity) in whi
h they 
ould be. As Wordsworth said,

\Strange �ts of passion have I known".18 A nonempir-i
al density fun
tional is most interesting from the de-veloper's viewpoint, sin
e its 
onstru
tion requires dis
i-plined imagination and insight (as well as trial and error).\Semiempiri
al �tting" leaves unexplained all the datathat was �tted. It 
an make very a

urate predi
tionsfor systems and properties that are suÆ
iently similar tothose �tted, but 
an fail badly when the new systems andproperties are suÆ
iently di�erent. In parti
ular, higher-level fun
tionals that are �tted to mole
ular data 
an befar less a

urate19 for the bulk and surfa
e properties ofsimple metals than even the lowest-level fun
tional, thelo
al-spin density approximation. Thus users who wantreliable high a

ura
y for a broad range of systems needa high-level nonempiri
al fun
tional.A given rung of Ja
ob's ladder (Se
tion IV) is too re-stri
tive in form to be exa
t and must have intrinsi
 a
-
ura
y limits. Thus �tting a given data set too 
losely
an result in \over�tting". There are two senses in whi
ha semiempiri
al fun
tional of a given form 
an be over�t-ted. The �rst, whi
h 
an be avoided by a 
areful math-emati
al analysis, involves the introdu
tion of arti�
ialzigs and zags that redu
e the �tting error, or the intro-du
tion of more parameters than are really justi�ed. Forexample, the three mixing parameters in the B3PW9120or B3LYP17 hybrids 
an be redu
ed21 to one22{25 with-out a signi�
ant overall error in
rease, and the optimumvalue of this parameter to predi
t mole
ular atomizationenergies 
an even be rationalized.24 The se
ond sense isthe inevitable bias that arises in the sele
tion of a given�tting set and weights for this set.One of the authors of this arti
le is old enough to re
allthe history of the ele
tron-ion pseudopotential in 
on-densed matter physi
s. The 1960s and 1970s saw theappearan
e of many realisti
 semiempiri
al pseudopoten-tials. When a

urate nonempiri
al pseudopotentials be-
ame available,26 the semiempiri
al ones qui
kly and per-manently disappeared from the literature. We expe
t thehistory of density fun
tional theory to follow a parallel
ourse.III. WHY THE UNIFORM DENSITY LIMIT ISSACROSANCTThe paradigm density for 
ondensed matter physi
s isalso one of the simplest possible ones, the uniform den-sity in whi
h n"(r) and n#(r) are independent of positionr. The periodi
 valen
e-ele
tron density in a bulk solid(espe
ially a simple metal) has some resemblan
e to thisuniform density. The earliest and simplest spin-densityfun
tional for the ex
hange-
orrelation energy was thelo
al spin density (LSD) approximation1ELSDx
 [n"; n#℄ = Z d3r n"unifx
 (n"; n#); (1)where "unifx
 (n"; n#) is the ex
hange-
orrelation energyper parti
le of an ele
tron gas with uniform spin den-



3sities n" and n#, known a

urately from quantum MonteCarlo and other many-ele
tron methods.27 For an a

u-rate parametrization of "unifx
 (n"; n#), see Ref. 28. By 
on-stru
tion, Eq. (1) is exa
t in the one limit in whi
h it 
anbe, the limit of uniform spin densities. This limit is pre-served in all nonempiri
al density fun
tionals, but lost27in many semiempiri
al ones whi
h as a result 
an failseriously for the bulk and surfa
e properties of simplemetals.19In our view, if an approximation fails to be essentiallyexa
t for the limited 
lass of systems where it 
an be,it is a self-
ontradi
tion and should not underpin anymajor area of s
ien
e. The most widely-used fun
tionalin quantum 
hemistry, B3LYP, underestimates the mag-nitude of the 
orrelation energy of the uniform gas byabout 30%27 (as inherited from the 50% underestimationof LYP). In fa
t, the original three-parameter hybrid pro-posed by Be
ke,20 B3PW91, was a semiempiri
al fun
-tional designed to be exa
t for the uniform ele
tron gas.B3LYP was later favored be
ause of its slightly betterperforman
e for a data set of small mole
ules, althoughit is now 
lear that B3PW91 performs better than B3LYPfor large organi
 mole
ules.29The lo
al spin density approximation is so a

uratefor solids that it is still widely used in 
ondensed matterphysi
s. It is less useful for atoms and mole
ules, whi
hbear less resemblan
e to a uniform ele
tron gas and arebetter des
ribed by the fun
tionals on higher rungs of Ja-
ob's ladder. But even a pra
ti
al 
hemist should respe
tthe uniform density limit, sin
e he or she may somedayhave to deal with a mole
ule 
hemisorbed to the surfa
eof a simple metal.In fa
t, the relatively poor LSD atomization energieshave led to an undervaluation of LSD in 
hemistry. LSDgives remarkably a

urate bond lengths,29 and the errorsof its atomization energies 
an be dramati
ally redu
edby introdu
ing one empiri
al parameter to represent theenergy of ea
h free atom.30 For 
hemistry without freeatoms, LSD is not su
h a bad starting point.IV. JACOB'S LADDER OF DENSITYFUNCTIONAL APPROXIMATIONSAlthough many generalizations of the LSD of Eq. (1)were proposed, the �rst pra
ti
al one was the generalizedgradient approximation (GGA)7,9,12,13,31{35EGGAx
 [n"; n#℄ = Z d3r n"GGAx
 (n"; n#;rn";rn#); (2)whi
h introdu
es the density gradients rn"(r) andrn#(r) as additional lo
al ingredients or arguments of"GGAx
 . While LSD is the �rst, GGA is the se
ond rungof Ja
ob's ladder.The original motivation for Eq. (2) was the se
ond-

order gradient expansion (GEA)EGEAx
 [n"; n#℄ = Z d3r�n"unifx
 (n"; n#)+X�;�0 C��0x
 (n"; n#)rn� � rn�0n2=3� n2=3�0 �; (3)an expression valid for slowly-varying densities. The 
oef-�
ients C��0x
 were derived in the hope that Eq. (3) wouldimprove upon LSD for real solids and even for mole
ules,but this hope was disappointed. Langreth and Perdew6identi�ed the root of the problem, whi
h was also the keyto the development of new fun
tionals by the method of
onstraint satisfa
tion as de�ned in the Introdu
tion.The exa
t ex
hange-
orrelation energy 
an be ex-pressed by the adiabati
 
onne
tion or 
oupling 
onstantintegration36,37Ex
[n"; n#℄= 12 Z d3r n(r) Z d3r0 Z 10 d� n�x
([n"; n#℄; r; r0)jr0 � rj : (4)We 
onsider a series of systems having the same ground-state density n(r), di�erent ele
tron-ele
tron repulsions�=jr0 � rj (where the 
oupling 
onstant falls in the range0 � � � 1), and 
orresponding external potentialsv�(r). The real system has � = 1 and the Kohn{Sham non-intera
ting system has � = 0. In Eq.(4),n�x
([n"; n#℄; r; r0) is the density at r0 of the ex
hange-
orrelation hole surrounding an ele
tron at r:n�x
 = nx + n�
 ; (5)where the ex
hange hole density nx is independent of �.Note that n�x
 
an be found from the 
orrelated wavefun
tion for a given �. The exa
t ex
hange-
orrelationhole has the following key properties:8,36,37Z d3r0 nx(r; r0) = �1; (6)Z d3r0 n�
 (r; r0) = 0; (7)nx(r; r0) � 0: (8)The LSD hole, being the hole of a possible physi
al sys-tem (the uniform ele
tron gas), satis�es Eqs. (6){(8),whi
h 
onstrain Eq. (4) to reasonable values. The LSD\on-top" hole density n�;LSDx
 (r; r) is also nearly exa
t.38However, the GEA hole, being only the expansion of ahole to se
ond order in r, has a spurious large jr0 � rjbehavior that violates Eqs. (6){(8). Simple 
uto�s thatrestore some or all of these 
onstraints led to the �rstGGAs, whi
h markedly improved the 
al
ulated totaland atomization energies of mole
ules.Our re
ommended nonempiri
al GGA is that ofPerdew, Burke and Ernzerhof (PBE).9 It has two dif-ferent derivations, one (whi
h it shares with its PW91twin,34 the �rst 
ompletely nonempiri
al GGA) based



4upon satisfying the 
onstraints (6){(8) on the system-averaged hole,35 and the other based upon satisfying
onstraints on the ex
hange-
orrelation energy itself.9Revisions39{41 of PBE satisfy only the se
ond set of 
on-straints, not the �rst, and so are less 
onvin
ing. Theserevisions typi
ally work better than PBE for the atom-ization energies of mole
ules (their target property), butworse than PBE for mole
ular bond lengths42,43 and forlatti
e 
onstants and surfa
e energies of solids.19Adding the next natural set of lo
al ingredients pro-du
es the meta-GGA8,14,44{48 or third rung of Ja
ob'sladder:EMGGAx
 [n"; n#℄ = Z d3r n (9)�"MGGAx
 (n"; n#;rn";rn#;r2n";r2n#; �"; �#):The Lapla
ians r2n�(r) seem like the more natural nextstep, sin
e they appear in the fourth-order gradient ex-pansion, but the Kohn{Sham orbital kineti
 energy den-sities, ��(r) = 12 o

:Xi jr�i�(r)j2; (10)whi
h appear in the Taylor expansion of the ex
hangehole density about jr0 � rj = 0, are also (impli
it) fun
-tionals of the density and permit the satisfa
tion of more
onstraints (Se
tion VI) than the Lapla
ians do. They
arry the same information in the limit of a slowly-varying density, sin
e49�GEA� = �unif� + 172 jrn� j2n� + 16r2n� ; (11)where �unif� = 310 (6�2)2=3n5=3� .The only nonempiri
al meta-GGA for ex
hange and
orrelation is that of Tao, Perdew, Staroverov and S
use-ria (TPSS),48 whi
h utilizes only �" and �# without r2n"andr2n#. It is 
onstru
ted by satisfying only 
onstraintson the ex
hange-
orrelation energy, but we 
an proba-bly \reverse-engineer" TPSS ex
hange and 
orrelationholes50 satisfying the hole 
onstraints of Eqs. (6){(8).Extensive numeri
al tests29,51{58 of TPSS suggest thatthe nonempiri
al \
onstraint satisfa
tion" approa
h 
on-tinues to work on the meta-GGA level, produ
ing a fun
-tional that is fully 
ompetitive with semiempiri
al ones.Compared to PBE, TPSS greatly improves atomizationenergies for mole
ules and surfa
e energies for solids.LSD is a lo
al and GGA is a semi-lo
al fun
tional of thedensity. Meta-GGA is a semi-lo
al fun
tional of the den-sity and the o

upied orbitals, whi
h are readily availablein any Kohn{Sham-like 
al
ulation. Semi-lo
al fun
tion-als are expe
ted to work best when the exa
t ex
hange-
orrelation hole is well-lo
alized around its ele
tron, asit is in slowly-varying and in 
ompa
t (e.g., spheri
al)ele
tron densities.Higher rungs of Ja
ob's ladder ne
essarily introdu
e amore 
omputationally 
hallenging nonlo
al fun
tional of
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HEAVEN OF CHEMICAL ACCURACY

HARTREE WORLDFIG. 1: Ja
ob's ladder of density fun
tional approximationsto the ex
hange-
orrelation energy.the orbitals. The fourth rung adds as a lo
al ingredientthe exa
t ex
hange energy density"x�(r) = 12 Z d3r0 n�x (r; r0)jr0 � rj (12)= � 12n�(r) Z d3r0 jPo

:i ��i�(r)�i�(r0)j2jr0 � rj ;or any quantity su
h as the exa
t ex
hange energy that
an be found from it. The hyper-GGA10,59 is thenEHGGAx
 [n"; n#℄ = Z d3r n�"HGGAx
 (n"; n#;rn";rn#; �"; �#; "x"; "x#): (13)Semiempiri
al hyper-GGAs in
lude the widely-usedglobal hybrid fun
tionals like B3LYP, B3PW91 orPBE022,23 that mix a �xed fra
tion of exa
t ex
hangewith GGA ex
hange, and the lo
al hybrids.60 Althoughthe global hybrid fun
tionals 
an be remarkably a

u-rate for mole
ules and strongly inhomogeneous solids,they are theoreti
ally less than ideal be
ause they do notsatisfy any exa
t 
onstraints that GGAs do not satisfy.We are working on nonempiri
al hyper-GGAs that use100% of exa
t ex
hange with a 
ompatible fully-nonlo
al
orrelation.59The �fth and �nal rung of Ja
ob's ladder utilizes all ofthe Kohn{Sham orbitals, uno

upied as well as o

upied.At this level the adiabati
 
onne
tion of Eq. (4) leads togeneralizations61{64 of the random phase approximation(RPA) that obviate the need for ele
tron gas data (infa
t, generating this data), and also a

ount for the long-range van der Waals attra
tion between non-overlapped



5ele
tron densities. These generalizations are still basedupon 
onstraint satisfa
tion, but at a higher level.Figure 1 shows Ja
ob's ladder rising (half dream andhalf reality) from the Hartree world of unrealisti
allyweak or missing bonding in �ve steps to the heaven of
hemi
al a

ura
y. Note that it is not only the higherrungs that have value. The lower rungs may be less a
-
urate, but they are also simpler to understand and theyrequire less programming and 
omputation time.In our own nonempiri
al 
onstru
tions, we try to fol-low a 
onservative \don't re-invent the wheel" approa
h.Thus, our fun
tionals resemble Chinese boxes or Russiandolls: LSD is inside the PBE GGA, PBE GGA is insidethe TPSS meta-GGA, and TPSS meta-GGA will proba-bly be inside our hyper-GGA.From the nonempiri
al viewpoint, LSD and GGA are
ontrolled extrapolations from the slowly-varying limit,while meta-GGA and hyper-GGA are 
ontrolled interpo-lations between the limits of slowly-varying and 
ompa
tone- or two-ele
tron densities (the paradigm densities for
ondensed matter physi
s and quantum 
hemistry, re-spe
tively). The remaining 
onstraints \
ontrol" the ex-trapolation or interpolation. We believe that the �rstthree rungs are essentially 
ompleted by the LSD, PBEand TPSS fun
tionals respe
tively. We en
ourage usersto report and 
ompare their results for all three of thesefun
tionals. Nonempiri
al fun
tionals on the fourth and�fth rungs remain to be developed or adequately tested.Although the hybrid fun
tionals on the fourth rung aresemiempiri
al, we 
an also re
ommend the PBE0,22,23!PBEh,65 and TPSSh29 hybrids, whi
h satisfy many ex-a
t 
onstraints and have at most one �t parameter.V. IS EXACT EXCHANGE NEEDED?The use of a fra
tion of exa
t ex
hange wasintrodu
ed20 into density fun
tional approximations toimprove the 
al
ulated atomization energies of mole
ules,at a signi�
ant 
omputational 
ost. It was later shown14that 
exible fun
tional forms involving the kineti
 en-ergy density (VSXC14) were 
apable of yielding simi-lar and even better thermo
hemistry without exa
t ex-
hange. However, this was a
hieved at the 
ost of em-piri
al parametrization. Now that a

urate atomizationenergies are predi
ted by a nonempiri
al density fun
-tional without exa
t ex
hange (TPSS), do we still needexa
t ex
hange in 
hemistry?It seems that we do need exa
t ex
hange, or perhapsself-intera
tion 
orre
tion (Se
tion VII), to des
ribe situ-ations in whi
h the exa
t ex
hange-
orrelation hole has along-range 
omponent that 
annot be 
aptured by semi-lo
al approximations like LSD, GGA, or meta-GGA. Thesimplest example is stret
hed H+2 (a highly non
ompa
tone-ele
tron density), but less extreme and more pra
ti-
al examples are moderately stret
hed mole
ules52 andthe transition state of a 
hemi
al rea
tion. The forwardand reverse energy barriers tend to be seriously under-

estimated in LSD. These errors are typi
ally redu
ed byabout a fa
tor of two in the PBE GGA or the TPSSmeta-GGA, but the remaining error is still far too largefor 
hemi
al kineti
s.57,58 The progression from LSD toPBE GGA to TPSS meta-GGA seems to show a 
onsis-tent and 
ontinuing redu
tion of error only for rea
tionsthat do not involve a free H atom or H2 mole
ule. Thehybrid fun
tionals that admix exa
t ex
hange, su
h asPBE0, a
hieve a signi�
ant further redu
tion of the error,but are still far from satisfa
tory. It appears that self-intera
tion 
orre
tion 
an signi�
antly improve energybarriers.66 Perhaps a nonempiri
al hyper-GGA or an im-proved self-intera
tion 
orre
tion will solve this problem,and will also improve the des
ription of mole
ules 
on-taining transition-metal atoms where again TPSS makesonly a small improvement55 over PBE.Be
ause in
lusion of exa
t ex
hange implies moving upJa
ob's ladder, we expe
t hybrid and hyper-GGA fun
-tionals to provide better des
ription for solids as well.Dire
t evaluation of exa
t ex
hange for solids with metal-li
 
hara
ter remains prohibitively expensive, but the re-
ently developed s
reened Coulomb potential method65for hybrid fun
tionals over
omes this obsta
le with onlya slight loss of pre
ision.VI. SHORT SUMMARY OF KNOWN EXACTCONSTRAINTS ON Ex
[n"; n#℄Here we will summarize some of the major known ex-a
t 
onstraints on Ex
[n"; n#℄ and dis
uss whether ornot they are satis�ed by approximate fun
tionals. Size-
onsisten
y is of 
ourse a basi
 
onstraint, but one thatis always satis�ed by semi-lo
al fun
tionals. (Makingthe fun
tional depend upon an integrated property likeN = R d3r n(r) 
an however violate size-
onsisten
y.)For the ex
hange energy, the spin-s
aling relation67Ex[n"; n#℄ = 12Ex[2n"℄ + 12Ex[2n#℄ (14)(where Ex[n℄ � Ex[n=2; n=2℄) and the uniform-densitys
aling relation68 Ex[n
 ℄ = 
Ex[n℄ (15)[where n
(r) = 
3n(
r)℄ are satis�ed by all the densityfun
tionals we know, whether nonempiri
al or semiem-piri
al, as is the upper bound Ex[n"; n#℄ � 0.The Lieb{Oxford lower bound69,70 (expressed in termsof a lo
al density approximation)Ex[n"; n#℄ � Ex
[n"; n#℄ � 2:273ELSDx [n=2; n=2℄ (16)for all possible spin densities is satis�ed by LSD and bythe PBE GGA and TPSS meta-GGA. Most semiempiri-
al fun
tionals 
an violate this bound for possible but un-realisti
 densities. The bound is nonetheless important,and its satisfa
tion for all densities has impli
ations forreal densities.



6The 
orrelation energy s
ales in the high-density limitto a 
onstant, as shown by Levy:71lim
!1E
[n
 ℄ = 
onst: (17)This 
ondition is violated by LSD and by many semiem-piri
al fun
tionals, but satis�ed by PBE GGA and TPSSmeta-GGA. In the low-density limit under uniform s
al-ing (
 ! 0), 
orrelation s
ales like ex
hange; within LSD,PBE GGA and TPSS meta-GGA, the spin-density fun
-tionals Ex
[n"; n#℄ properly be
ome density fun
tionalsEx
[n℄ in this limit.For a uniform ele
tron gas,27,28 LSD, PBE GGA, andTPSS meta-GGA are all exa
t by 
onstru
tion, whilemany semiempiri
al fun
tionals are not. The nonempiri-
al fun
tionals also have gradient expansions like Eq. (3)in the limit of slowly-varying densities. In LSD, the gra-dient 
oeÆ
ients are all zero. PBE GGA and TPSS meta-GGA have 
orre
t se
ond-order gradient 
oeÆ
ients for
orrelation.6 The TPSS meta-GGA has 
orre
t gradient
oeÆ
ients for ex
hange through fourth order in r.72,73LSD, PBE GGA, and TPSS meta-GGA all have a rea-sonable linear response54 for the uniform ele
tron gas,although this is a
hieved in PBE GGA by using a se
ond-order gradient 
oeÆ
ient for ex
hange that is too big bya fa
tor of 1.778.For any one-ele
tron density n1(r), we know that74Ex[n1; 0℄ = �U [n1℄� �12 Z d3r Z d3r0 n1(r)n1(r0)jr0 � rj ; (18)E
[n1; 0℄ = 0: (19)In other words, the ex
hange energy of a fully spin-polarized one-ele
tron system is a self-intera
tion 
orre
-tion to the Hartree-energy, and the 
orrelation energy forsu
h a system vanishes. Be
ause the right hand side ofEq. (18) is a fully nonlo
al fun
tional of the density, this
onstraint 
annot be satis�ed on the �rst three rungsof Ja
ob's ladder, although it 
an be satis�ed on thefourth rung by hyper-GGAs that use full exa
t ex
hange.Eq. (19) 
annot be satis�ed on the �rst two rungs, but issatis�ed by the TPSS meta-GGA on the third rung.The exa
t ex
hange potential, vx
�(r) = ÆEx
=Æn�(r),at the nu
lear 
usp of the ele
tron density is �nite.75This 
ondition, satis�ed by LSD, is ne
essarily lost inGGA, but is restored in the TPSS meta-GGA. The regionaround the nu
leus is one in whi
h the density is domi-nated by a single orbital shape and the redu
ed densitygradient s = jrnj=2(3�2)1=3n4=3 is small; these 
ondi-tions 
an also hold simultaneously near the 
enters of
hemi
al bonds.As a 
onsequen
e of Eqs. (15) and (17), the high-density (
 ! 1) limit of Ex
[n"; n#℄ is the exa
t ex-
hange energy Ex[n"; n#℄. This 
ondition 
an be satis�edon the fourth rung of Ja
ob's ladder by hyper-GGAs thatuse full exa
t ex
hange. And so for that matter will any
onstraint on the ex
hange energy.

There are also known 
onstraints for non-uniform density s
aling,76 whether two-dimensionalnxy
 (x; y; z) = 
2n(
x; 
y; z) or one-dimensionalnx
(x; y; z) = 
n(
x; y; z), whi
h in the limit 
 ! 1
an produ
e a 
rossover from a three- to a one- ortwo-dimensional ele
tron density, respe
tively.77Ex
ept in the one-ele
tron and high-density limits, themost long-ranged parts of the exa
t ex
hange and 
or-relation holes tend to 
an
el,78 making Ex
[n"; n#℄ lessstrongly nonlo
al than Ex[n"; n#℄. Thus it is una

ept-able to 
ombine exa
t ex
hange with meta-GGA 
orrela-tion. Exa
t ex
hange 
an only be 
ombined with a fullynonlo
al 
orrelation, 
onstru
ted on the fourth or �fthrungs of the ladder.VII. SELF-INTERACTION CORRECTION OFSEMI-LOCAL FUNCTIONALS, AND HOW TOIMPROVE ITThe semi-lo
al density fun
tionals on the �rst threerungs of Ja
ob's ladder violate Eq. (18) and those on the�rst two rungs also violate Eq. (19). Simple fun
tionalsthat work well for many-ele
tron systems 
annot be exa
tfor one-ele
tron systems. This problem was evident longago within LSD, and led Perdew and Zunger74 to proposea self-intera
tion 
orre
tion (SIC) to LSD or any otherdensity fun
tional approximation (DFA):ESIC-DFAx
 [n"; n#℄ = EDFAx
 [n"; n#℄� o

:Xi� �U [~ni� ℄ +EDFAx
 [~ni� ; 0℄� ; (20)where ~ni�(r) = j~�i�(r)j2 is the density of an o

upiedorbital (in general, not a Kohn{Sham orbital but somemore lo
alized orbital 
onstru
ted to minimize the self-intera
tion 
orre
ted energy). The SIC of Eq. (20) prop-erly vanishes when the original density fun
tional approx-imation is exa
t. This feature seems to be absent from are
ently proposed alternative self-intera
tion 
orre
tionto the one-ele
tron potential.79,80The Perdew{Zunger SIC has a long history of strikingsu

esses and failures.81{83 It appears that elimination ofself-intera
tion error is often important, but that Eq. (20)is not ne
essarily the best way to a
hieve this. In 
hem-i
al appli
ations, for example, the GGA seems to needonly about 40%84 of the self-intera
tion 
orre
tion pre-sented in Eq. (20) (although a simple s
aling by 0.4 pro-du
es a fun
tional that is no longer exa
t for one-ele
trondensities). The results of SIC 
al
ulations of rea
tion bar-riers show us that a s
aling fa
tor of 0.5{0.7 is needed, de-pending on the rea
tion type and fun
tional.66,85 A sys-temati
 thermo
hemi
al study86 shows that the Perdew{Zunger SIC indeed over
orre
ts beyond-LSD fun
tionals.There are also formal problems with Eq. (20). If we�nd lo
alized orbitals for a uniform density, our SIC fun
-tional will no longer be exa
t in the uniform or slowly-varying density limit. But if we �nd delo
alized orbitals



7for a uniform density, then Eq. (20) will produ
e a \falsesurfa
e energy"81 for any �nite jellium system.An alternative self-intera
tion 
orre
tion87 that avoidsthese formal diÆ
ulties while s
aling down the self-intera
tion 
orre
tion for many-ele
tron densities isfound by introdu
ing an e�e
tive orbital density at r0for an ele
tron of spin � at r, i.e.,nr�(r0) � �n�x(r; r0); (21)where n�x(r; r0) is the exa
t ex
hange hole density, andnoting that 0 � �W� =�� � 1, where �� is de�ned byEq. (10) and �W� = jrn� j2=8n� is the von Weizs�a
kerkineti
 energy density:ESIC-DFAx
 [n"; n#℄ = EDFAx
 [n"; n#℄ (22)�X� Z d3r��W��� �k n�(r)�U [nr� ℄ +EDFAx
 [nr� ; 0℄	 ;whereU [nr� ℄ = 12 Z d3r0 Z d3r00 nr�(r0)nr�(r00)jr00 � r0j (23)and EDFAx
 [nr� ; 0℄ involves integration over r0. For anyone-ele
tron density of spin �, �W� =�� = 1 and nr�(r0) =n�(r0) = n(r0). To preserve the 
orre
t slowly-varyinglimit requires k � 3 when the DFA is the TPSS meta-GGA. Within TPSS, the 
orrelation 
ontribution toEq. (22) vanishes. We must have k � 2 for the PBEGGA and k � 1 for LSD.Be
ause nr�(r0) of Eq. (21), n�(r), and ��(r) are in-variant under a unitary transformation of the o

upiedorbitals, no lo
alizing transformation is needed in theimplementation of the SIC-DFA of Eq. (22). More-over, the e�e
tive one-ele
tron Hamiltonian (with a non-multipli
ative potential) for Eq. (22) is self-adjoint andits 
anoni
al orbitals are orthonormal. Although Eq. (22)may not be easy to implement, it has these interest-ing and promising formal properties in 
ommon with themeta- and hyper-GGAs.Why think about a self-intera
tion 
orre
tion to themeta-GGA when the hyper-GGA will be exa
t for anyone-ele
tron density? One answer is that the Perdew{Zunger SIC of Eq. (20) provides a nearly 
orre
t de-s
ription of fra
tional parti
le number in a many-ele
tronopen system,88 and this good des
ription is not guaran-teed in the hyper-GGA, whi
h 
ould thereby fail (likeLSD, GGA and meta-GGA) to des
ribe 
harge transfer
orre
tly. VIII. OTHER ISSUESA good density fun
tional for the ex
hange-
orrelationenergy should produ
e a realisti
 integrated energy anda realisti
 ele
tron density. There is no reason to expe
tit to produ
e any given energy density, sin
e the energydensity is neither physi
al nor unique, although it 
an be

useful for other purposes.89{91 Energy density may be anissue for lo
al hybrids60 and hyper-GGAs.10,59There is also no reason to expe
t the Kohn{Shamdeterminant to display all the symmetries of the truewave fun
tion. Symmetry breaking in the spin densi-ties is more disturbing,92 but often has a simple physi
alinterpretation.93 Nor does a good density fun
tional needto produ
e the spin resolution of the 
orrelation energyinto "", ##, and "# 
ontributions. In fa
t, a widely-usedspin resolution is in
orre
t94 in the uniform-density limit.An interesting re
ent development is the appearan
eof tra
table nonlo
al density fun
tionals that in
lude thelong-range van der Waals intera
tion.95 It remains to beseen if those fun
tionals 
an be merged with the variousfun
tionals on the �rst four rungs of Ja
ob's ladder.We also note in passing that the orbitals that min-imize the meta-GGA energy belong to a self-adjointbut non-multipli
ative e�e
tive one-ele
tron Hamilto-nian. However, it seems to make little energeti
 di�er-en
e if one uses instead a multipli
ative optimized e�e
-tive potential96,97 or even the PBE GGA potential. Atthe same time, proper in
lusion of exa
t ex
hange intothe Kohn{Sham s
heme via a multipli
ative potentialgreatly improves the a

ura
y of single-parti
le spe
tra98and is expe
ted to be important for time-dependent andex
ited-state appli
ations.IX. CONCLUSIONSWe have argued that density fun
tional approxima-tions should be 
onstru
ted nonempiri
ally via the satis-fa
tion of known exa
t 
onstraints (valid for all densitiesor for a large 
lass of them), and that the uniform densitylimit in parti
ular is a logi
ally required 
onstraint. Werealize that this nonempiri
al 
onstru
tion is a slow andun
ertain pro
ess, and that for 
ertain systems and prop-erties the users will want to employ semiempiri
al or �t-ted fun
tionals. In su
h 
ases, we re
ommend fun
tionalsthat are 
orre
t for the uniform ele
tron gas and 
ontainfew �tted parameters, su
h as the PBE0 or TPSSh hy-brids. Even then, we believe that results should also bereported for the nonempiri
al fun
tionals like LSD, PBEGGA, and TPSS meta-GGA, as a measure of how mu
hwe really understand and what remains to be understood.We 
lose with some general \do's and don't's". Soft-ware developers should take 
are to program and do
u-ment density fun
tionals 
orre
tly, and to update their
odes with signi�
ant new fun
tionals. Superseded fun
-tionals (in the sense that PW8632,33 and PW9134 are su-perseded by PBE9) should be allowed to retire gradually.Users should not randomly mix and mat
h fun
tionals,but should use ex
hange and 
orrelation pie
es designedto work together, with their designer-re
ommended lo-
al parts. They should not shop indis
riminately for thefun
tional that \works best". Users should always saywhi
h fun
tional they used, with its proper name andliterature referen
e, and why they 
hose it. Statements



8like \we used density fun
tional theory" or \we used thegeneralized gradient approximation" are almost uselessto a reader or listener who wants to reprodu
e the re-sults. A
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