
Presription for the design and seletion of density funtional approximations:More onstraint satisfation with fewer �tsJohn P. Perdew, Adrienn Ruzsinszky, and Jianmin TaoDepartment of Physis and Quantum Theory Group,Tulane University, New Orleans, Louisiana 70118Viktor N. Staroverov and Gustavo E. SuseriaDepartment of Chemistry, Rie University, Houston, Texas 77005G�abor I. CsonkaDepartment of Inorgani Chemistry, Budapest University of Tehnology and Eonomis, H-1521, Budapest, Hungary(Dated: June 25, 2004)We present the ase for the nonempirial onstrution of density funtional approximations for theexhange-orrelation energy by the traditional method of \onstraint satisfation" without �ttingto data sets, and present evidene that this approah has been suessful on the �rst three rungsof \Jaob's ladder" of density funtional approximations (loal spin-density approximation or LSD,generalized gradient approximation or GGA, and meta-GGA). We expet that this approah willalso prove suessful on the fourth and �fth rungs (hyper-GGA and generalized random-phaseapproximation). In partiular, we argue for the theoretial and pratial importane of reoveringthe orret uniform density limit, whih many semiempirial funtionals fail to do. Among thebeyond-LSD funtionals now available to users, we reommend the nonempirial Perdew{Burke{Ernzerhof (PBE) GGA and the nonempirial Tao{Perdew{Staroverov{Suseria (TPSS) meta-GGA,and their one-parameter hybrids with exat exhange. TPSS improvement over PBE is dramatifor atomization energies of moleules and surfae energies of solids, and small or moderate for otherproperties. TPSS is now or soon will be available in standard odes like Gaussian, Turbomole,NWChem, ADF, WIEN, et. We also disuss old and new ideas to eliminate the self-interationerror that plagues the funtionals on the �rst three rungs of the ladder, bring up other related issues,and lose with a list of \do's and don't's" for software developers and users.I. INTRODUCTIONKohn{Sham spin density funtional theory1{4 is nowthe most widely-used method for eletroni struturealulations in ondensed matter physis and quan-tum hemistry, providing useful preditions for atoms,moleules, nanostrutures, solids, and solid surfaes.This theory looks (and, more importantly, sales withsystem size5) like a mean-�eld theory with a self-onsistent e�etive one-eletron Shr�odinger equation forthe Kohn{Sham orbitals, but inludes in priniple all or-relation e�ets on the ground-state eletron density andtotal energy. Useful extensions of the theory to thermalequilibrium at �nite temperature and to exited or time-dependent states have also been made.2,3 In priniple,only the density funtionals for exhange and orrela-tion remain to be approximated. The \due diligene"requirement of good siene demands some understand-ing of what these approximations are and how they areonstruted, not only from the developers but also fromthe users and even the opponents of density funtionaltheory.We are writing this artile for all of these potentialreaders to express our personal preferenes and meta-physial priniples for the onstrution and seletion ofdensity funtional approximations. We will argue thatthe traditional nonempirial approah of onstrution by\onstraint satisfation"1,6{9 remains the most onvin-

ing, most universal, and most enduring one, making fulluse of the many known exat onstraints on the den-sity funtional for the exhange-orrelation energy. Inthis approah, the density funtional approximations areassigned to various rungs of \Jaob's ladder",10 aord-ing to the number and kind of their loal ingredients.The lowest rung is the loal spin density approximationof Kohn and Sham,1 the seond rung is the generalizedgradient approximation, and so on. Higher rungs areinreasingly more omplex. The best nonempirial fun-tional for a given rung is onstruted to satisfy as manyexat theoretial onstraints as possible while providingsatisfatory numerial preditions for real systems. Onea rung has been seleted, there remains little hoie aboutwhih onstraints to satisfy (but greater freedom in howto satisfy them). Auray is expeted to inrease up theladder as additional loal ingredients enable the satisfa-tions of additional onstraints.Aside from Coulomb perturbation theory (whih failsfor metals), the only known alternative to \onstraintsatisfation" is \semiempirial �tting",11{15 in whih thefuntionals are �tted to seleted data from experimentor from ab initio alulations. Of ourse, the additionalingredients that arise at higher rungs of Jaob's ladderan also aommodate more �t parameters. Funtion-als with as many as 21 �t parameters, violating some ofthe most basi exat onstraints, are espeially popularin hemistry. Our traditional view that the funtionals



2should be onstruted with few empirial parameters andpreferably none is now a minority opinion for whih wewill present a rationale. We will point to reent develop-ments whih show the ontinuing power of the nonempir-ial onstraint satisfation approah and disuss possiblefuture developments along the same general diretion.II. IS DENSITY FUNCTIONAL THEORY ABINITIO?Knowing quantum mehanis and Coulomb's law forthe eletron-eletron interation, we know almost every-thing we need in priniple for the desription of atoms,moleules and solids. Numerial studies based upon theorrelated many-eletron wave funtion an be ab initio,although omputationally intratable for large moleulesor unit ells. The underlying priniples of quantum me-hanis and Coulomb's law are aepted as universallyvalid and basi. This aeptane is itself grounded inexperiment, as all good siene is.Starting from these priniples, we an derive1,16 theKohn{Sham ground-state density funtional theory andprove that the ground-state exhange-orrelation energyis a funtional of the total eletron density n(r) or of theseparate up and down spin densities n"(r) and n#(r). Wean also prove many exat properties (Setion VI) of thisfuntional, to onstrain our approximation to it. But thisfuntional is known neither exatly nor as a systematiseries of approximations onverging in every ase to theexat answer (the highest expetation of a fully ab initiotheory).So is density funtional theory ab initio or semiempir-ial? We suggest that it an fall in between as a nonem-pirial theory when the funtionals are onstruted byonstraint satisfation without empirial �tting. It is thismiddle way that is advoated here.Language that is now widely used tends to be ontra-ditory and onfusing. Some artiles distinguish betweenab initio (wave funtion-based) and \density funtional"alulations, suggesting in a subtle and perhaps uninten-tional way that density funtional theory is semiempiri-al. Other papers refer to density funtional alulationsas \�rst priniples" or ab initio, but that is a long strethwhen the underlying funtional has, for example, eight �tparameters like the popular B3LYP,17 even though theseparameters are �xed one for all by a partiular �tting toa given data set. (B3LYP has one empirial parameter inits Beke exhange,12 �ve in its LYP13 orrelation, andthree more in the hybridization with exat exhange).A fully ab initio density funtional approximationwould be good for users but uninteresting for develop-ers, as it would leave too little room for reative play.A semiempirial density funtional approximation, how-ever, leaves too muh room, enouraging an \anythingthat works" attitude. Many popular funtionals inlud-ing B3LYP are not exat even in the one limit (uniformdensity) in whih they ould be. As Wordsworth said,

\Strange �ts of passion have I known".18 A nonempir-ial density funtional is most interesting from the de-veloper's viewpoint, sine its onstrution requires disi-plined imagination and insight (as well as trial and error).\Semiempirial �tting" leaves unexplained all the datathat was �tted. It an make very aurate preditionsfor systems and properties that are suÆiently similar tothose �tted, but an fail badly when the new systems andproperties are suÆiently di�erent. In partiular, higher-level funtionals that are �tted to moleular data an befar less aurate19 for the bulk and surfae properties ofsimple metals than even the lowest-level funtional, theloal-spin density approximation. Thus users who wantreliable high auray for a broad range of systems needa high-level nonempirial funtional.A given rung of Jaob's ladder (Setion IV) is too re-stritive in form to be exat and must have intrinsi a-uray limits. Thus �tting a given data set too loselyan result in \over�tting". There are two senses in whiha semiempirial funtional of a given form an be over�t-ted. The �rst, whih an be avoided by a areful math-ematial analysis, involves the introdution of arti�ialzigs and zags that redue the �tting error, or the intro-dution of more parameters than are really justi�ed. Forexample, the three mixing parameters in the B3PW9120or B3LYP17 hybrids an be redued21 to one22{25 with-out a signi�ant overall error inrease, and the optimumvalue of this parameter to predit moleular atomizationenergies an even be rationalized.24 The seond sense isthe inevitable bias that arises in the seletion of a given�tting set and weights for this set.One of the authors of this artile is old enough to reallthe history of the eletron-ion pseudopotential in on-densed matter physis. The 1960s and 1970s saw theappearane of many realisti semiempirial pseudopoten-tials. When aurate nonempirial pseudopotentials be-ame available,26 the semiempirial ones quikly and per-manently disappeared from the literature. We expet thehistory of density funtional theory to follow a parallelourse.III. WHY THE UNIFORM DENSITY LIMIT ISSACROSANCTThe paradigm density for ondensed matter physis isalso one of the simplest possible ones, the uniform den-sity in whih n"(r) and n#(r) are independent of positionr. The periodi valene-eletron density in a bulk solid(espeially a simple metal) has some resemblane to thisuniform density. The earliest and simplest spin-densityfuntional for the exhange-orrelation energy was theloal spin density (LSD) approximation1ELSDx [n"; n#℄ = Z d3r n"unifx (n"; n#); (1)where "unifx (n"; n#) is the exhange-orrelation energyper partile of an eletron gas with uniform spin den-



3sities n" and n#, known aurately from quantum MonteCarlo and other many-eletron methods.27 For an au-rate parametrization of "unifx (n"; n#), see Ref. 28. By on-strution, Eq. (1) is exat in the one limit in whih it anbe, the limit of uniform spin densities. This limit is pre-served in all nonempirial density funtionals, but lost27in many semiempirial ones whih as a result an failseriously for the bulk and surfae properties of simplemetals.19In our view, if an approximation fails to be essentiallyexat for the limited lass of systems where it an be,it is a self-ontradition and should not underpin anymajor area of siene. The most widely-used funtionalin quantum hemistry, B3LYP, underestimates the mag-nitude of the orrelation energy of the uniform gas byabout 30%27 (as inherited from the 50% underestimationof LYP). In fat, the original three-parameter hybrid pro-posed by Beke,20 B3PW91, was a semiempirial fun-tional designed to be exat for the uniform eletron gas.B3LYP was later favored beause of its slightly betterperformane for a data set of small moleules, althoughit is now lear that B3PW91 performs better than B3LYPfor large organi moleules.29The loal spin density approximation is so auratefor solids that it is still widely used in ondensed matterphysis. It is less useful for atoms and moleules, whihbear less resemblane to a uniform eletron gas and arebetter desribed by the funtionals on higher rungs of Ja-ob's ladder. But even a pratial hemist should respetthe uniform density limit, sine he or she may somedayhave to deal with a moleule hemisorbed to the surfaeof a simple metal.In fat, the relatively poor LSD atomization energieshave led to an undervaluation of LSD in hemistry. LSDgives remarkably aurate bond lengths,29 and the errorsof its atomization energies an be dramatially reduedby introduing one empirial parameter to represent theenergy of eah free atom.30 For hemistry without freeatoms, LSD is not suh a bad starting point.IV. JACOB'S LADDER OF DENSITYFUNCTIONAL APPROXIMATIONSAlthough many generalizations of the LSD of Eq. (1)were proposed, the �rst pratial one was the generalizedgradient approximation (GGA)7,9,12,13,31{35EGGAx [n"; n#℄ = Z d3r n"GGAx (n"; n#;rn";rn#); (2)whih introdues the density gradients rn"(r) andrn#(r) as additional loal ingredients or arguments of"GGAx . While LSD is the �rst, GGA is the seond rungof Jaob's ladder.The original motivation for Eq. (2) was the seond-

order gradient expansion (GEA)EGEAx [n"; n#℄ = Z d3r�n"unifx (n"; n#)+X�;�0 C��0x (n"; n#)rn� � rn�0n2=3� n2=3�0 �; (3)an expression valid for slowly-varying densities. The oef-�ients C��0x were derived in the hope that Eq. (3) wouldimprove upon LSD for real solids and even for moleules,but this hope was disappointed. Langreth and Perdew6identi�ed the root of the problem, whih was also the keyto the development of new funtionals by the method ofonstraint satisfation as de�ned in the Introdution.The exat exhange-orrelation energy an be ex-pressed by the adiabati onnetion or oupling onstantintegration36,37Ex[n"; n#℄= 12 Z d3r n(r) Z d3r0 Z 10 d� n�x([n"; n#℄; r; r0)jr0 � rj : (4)We onsider a series of systems having the same ground-state density n(r), di�erent eletron-eletron repulsions�=jr0 � rj (where the oupling onstant falls in the range0 � � � 1), and orresponding external potentialsv�(r). The real system has � = 1 and the Kohn{Sham non-interating system has � = 0. In Eq.(4),n�x([n"; n#℄; r; r0) is the density at r0 of the exhange-orrelation hole surrounding an eletron at r:n�x = nx + n� ; (5)where the exhange hole density nx is independent of �.Note that n�x an be found from the orrelated wavefuntion for a given �. The exat exhange-orrelationhole has the following key properties:8,36,37Z d3r0 nx(r; r0) = �1; (6)Z d3r0 n� (r; r0) = 0; (7)nx(r; r0) � 0: (8)The LSD hole, being the hole of a possible physial sys-tem (the uniform eletron gas), satis�es Eqs. (6){(8),whih onstrain Eq. (4) to reasonable values. The LSD\on-top" hole density n�;LSDx (r; r) is also nearly exat.38However, the GEA hole, being only the expansion of ahole to seond order in r, has a spurious large jr0 � rjbehavior that violates Eqs. (6){(8). Simple uto�s thatrestore some or all of these onstraints led to the �rstGGAs, whih markedly improved the alulated totaland atomization energies of moleules.Our reommended nonempirial GGA is that ofPerdew, Burke and Ernzerhof (PBE).9 It has two dif-ferent derivations, one (whih it shares with its PW91twin,34 the �rst ompletely nonempirial GGA) based



4upon satisfying the onstraints (6){(8) on the system-averaged hole,35 and the other based upon satisfyingonstraints on the exhange-orrelation energy itself.9Revisions39{41 of PBE satisfy only the seond set of on-straints, not the �rst, and so are less onvining. Theserevisions typially work better than PBE for the atom-ization energies of moleules (their target property), butworse than PBE for moleular bond lengths42,43 and forlattie onstants and surfae energies of solids.19Adding the next natural set of loal ingredients pro-dues the meta-GGA8,14,44{48 or third rung of Jaob'sladder:EMGGAx [n"; n#℄ = Z d3r n (9)�"MGGAx (n"; n#;rn";rn#;r2n";r2n#; �"; �#):The Laplaians r2n�(r) seem like the more natural nextstep, sine they appear in the fourth-order gradient ex-pansion, but the Kohn{Sham orbital kineti energy den-sities, ��(r) = 12 o:Xi jr�i�(r)j2; (10)whih appear in the Taylor expansion of the exhangehole density about jr0 � rj = 0, are also (impliit) fun-tionals of the density and permit the satisfation of moreonstraints (Setion VI) than the Laplaians do. Theyarry the same information in the limit of a slowly-varying density, sine49�GEA� = �unif� + 172 jrn� j2n� + 16r2n� ; (11)where �unif� = 310 (6�2)2=3n5=3� .The only nonempirial meta-GGA for exhange andorrelation is that of Tao, Perdew, Staroverov and Suse-ria (TPSS),48 whih utilizes only �" and �# without r2n"andr2n#. It is onstruted by satisfying only onstraintson the exhange-orrelation energy, but we an proba-bly \reverse-engineer" TPSS exhange and orrelationholes50 satisfying the hole onstraints of Eqs. (6){(8).Extensive numerial tests29,51{58 of TPSS suggest thatthe nonempirial \onstraint satisfation" approah on-tinues to work on the meta-GGA level, produing a fun-tional that is fully ompetitive with semiempirial ones.Compared to PBE, TPSS greatly improves atomizationenergies for moleules and surfae energies for solids.LSD is a loal and GGA is a semi-loal funtional of thedensity. Meta-GGA is a semi-loal funtional of the den-sity and the oupied orbitals, whih are readily availablein any Kohn{Sham-like alulation. Semi-loal funtion-als are expeted to work best when the exat exhange-orrelation hole is well-loalized around its eletron, asit is in slowly-varying and in ompat (e.g., spherial)eletron densities.Higher rungs of Jaob's ladder neessarily introdue amore omputationally hallenging nonloal funtional of
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HARTREE WORLDFIG. 1: Jaob's ladder of density funtional approximationsto the exhange-orrelation energy.the orbitals. The fourth rung adds as a loal ingredientthe exat exhange energy density"x�(r) = 12 Z d3r0 n�x (r; r0)jr0 � rj (12)= � 12n�(r) Z d3r0 jPo:i ��i�(r)�i�(r0)j2jr0 � rj ;or any quantity suh as the exat exhange energy thatan be found from it. The hyper-GGA10,59 is thenEHGGAx [n"; n#℄ = Z d3r n�"HGGAx (n"; n#;rn";rn#; �"; �#; "x"; "x#): (13)Semiempirial hyper-GGAs inlude the widely-usedglobal hybrid funtionals like B3LYP, B3PW91 orPBE022,23 that mix a �xed fration of exat exhangewith GGA exhange, and the loal hybrids.60 Althoughthe global hybrid funtionals an be remarkably au-rate for moleules and strongly inhomogeneous solids,they are theoretially less than ideal beause they do notsatisfy any exat onstraints that GGAs do not satisfy.We are working on nonempirial hyper-GGAs that use100% of exat exhange with a ompatible fully-nonloalorrelation.59The �fth and �nal rung of Jaob's ladder utilizes all ofthe Kohn{Sham orbitals, unoupied as well as oupied.At this level the adiabati onnetion of Eq. (4) leads togeneralizations61{64 of the random phase approximation(RPA) that obviate the need for eletron gas data (infat, generating this data), and also aount for the long-range van der Waals attration between non-overlapped



5eletron densities. These generalizations are still basedupon onstraint satisfation, but at a higher level.Figure 1 shows Jaob's ladder rising (half dream andhalf reality) from the Hartree world of unrealistiallyweak or missing bonding in �ve steps to the heaven ofhemial auray. Note that it is not only the higherrungs that have value. The lower rungs may be less a-urate, but they are also simpler to understand and theyrequire less programming and omputation time.In our own nonempirial onstrutions, we try to fol-low a onservative \don't re-invent the wheel" approah.Thus, our funtionals resemble Chinese boxes or Russiandolls: LSD is inside the PBE GGA, PBE GGA is insidethe TPSS meta-GGA, and TPSS meta-GGA will proba-bly be inside our hyper-GGA.From the nonempirial viewpoint, LSD and GGA areontrolled extrapolations from the slowly-varying limit,while meta-GGA and hyper-GGA are ontrolled interpo-lations between the limits of slowly-varying and ompatone- or two-eletron densities (the paradigm densities forondensed matter physis and quantum hemistry, re-spetively). The remaining onstraints \ontrol" the ex-trapolation or interpolation. We believe that the �rstthree rungs are essentially ompleted by the LSD, PBEand TPSS funtionals respetively. We enourage usersto report and ompare their results for all three of thesefuntionals. Nonempirial funtionals on the fourth and�fth rungs remain to be developed or adequately tested.Although the hybrid funtionals on the fourth rung aresemiempirial, we an also reommend the PBE0,22,23!PBEh,65 and TPSSh29 hybrids, whih satisfy many ex-at onstraints and have at most one �t parameter.V. IS EXACT EXCHANGE NEEDED?The use of a fration of exat exhange wasintrodued20 into density funtional approximations toimprove the alulated atomization energies of moleules,at a signi�ant omputational ost. It was later shown14that exible funtional forms involving the kineti en-ergy density (VSXC14) were apable of yielding simi-lar and even better thermohemistry without exat ex-hange. However, this was ahieved at the ost of em-pirial parametrization. Now that aurate atomizationenergies are predited by a nonempirial density fun-tional without exat exhange (TPSS), do we still needexat exhange in hemistry?It seems that we do need exat exhange, or perhapsself-interation orretion (Setion VII), to desribe situ-ations in whih the exat exhange-orrelation hole has along-range omponent that annot be aptured by semi-loal approximations like LSD, GGA, or meta-GGA. Thesimplest example is strethed H+2 (a highly nonompatone-eletron density), but less extreme and more prati-al examples are moderately strethed moleules52 andthe transition state of a hemial reation. The forwardand reverse energy barriers tend to be seriously under-

estimated in LSD. These errors are typially redued byabout a fator of two in the PBE GGA or the TPSSmeta-GGA, but the remaining error is still far too largefor hemial kinetis.57,58 The progression from LSD toPBE GGA to TPSS meta-GGA seems to show a onsis-tent and ontinuing redution of error only for reationsthat do not involve a free H atom or H2 moleule. Thehybrid funtionals that admix exat exhange, suh asPBE0, ahieve a signi�ant further redution of the error,but are still far from satisfatory. It appears that self-interation orretion an signi�antly improve energybarriers.66 Perhaps a nonempirial hyper-GGA or an im-proved self-interation orretion will solve this problem,and will also improve the desription of moleules on-taining transition-metal atoms where again TPSS makesonly a small improvement55 over PBE.Beause inlusion of exat exhange implies moving upJaob's ladder, we expet hybrid and hyper-GGA fun-tionals to provide better desription for solids as well.Diret evaluation of exat exhange for solids with metal-li harater remains prohibitively expensive, but the re-ently developed sreened Coulomb potential method65for hybrid funtionals overomes this obstale with onlya slight loss of preision.VI. SHORT SUMMARY OF KNOWN EXACTCONSTRAINTS ON Ex[n"; n#℄Here we will summarize some of the major known ex-at onstraints on Ex[n"; n#℄ and disuss whether ornot they are satis�ed by approximate funtionals. Size-onsisteny is of ourse a basi onstraint, but one thatis always satis�ed by semi-loal funtionals. (Makingthe funtional depend upon an integrated property likeN = R d3r n(r) an however violate size-onsisteny.)For the exhange energy, the spin-saling relation67Ex[n"; n#℄ = 12Ex[2n"℄ + 12Ex[2n#℄ (14)(where Ex[n℄ � Ex[n=2; n=2℄) and the uniform-densitysaling relation68 Ex[n ℄ = Ex[n℄ (15)[where n(r) = 3n(r)℄ are satis�ed by all the densityfuntionals we know, whether nonempirial or semiem-pirial, as is the upper bound Ex[n"; n#℄ � 0.The Lieb{Oxford lower bound69,70 (expressed in termsof a loal density approximation)Ex[n"; n#℄ � Ex[n"; n#℄ � 2:273ELSDx [n=2; n=2℄ (16)for all possible spin densities is satis�ed by LSD and bythe PBE GGA and TPSS meta-GGA. Most semiempiri-al funtionals an violate this bound for possible but un-realisti densities. The bound is nonetheless important,and its satisfation for all densities has impliations forreal densities.



6The orrelation energy sales in the high-density limitto a onstant, as shown by Levy:71lim!1E[n ℄ = onst: (17)This ondition is violated by LSD and by many semiem-pirial funtionals, but satis�ed by PBE GGA and TPSSmeta-GGA. In the low-density limit under uniform sal-ing ( ! 0), orrelation sales like exhange; within LSD,PBE GGA and TPSS meta-GGA, the spin-density fun-tionals Ex[n"; n#℄ properly beome density funtionalsEx[n℄ in this limit.For a uniform eletron gas,27,28 LSD, PBE GGA, andTPSS meta-GGA are all exat by onstrution, whilemany semiempirial funtionals are not. The nonempiri-al funtionals also have gradient expansions like Eq. (3)in the limit of slowly-varying densities. In LSD, the gra-dient oeÆients are all zero. PBE GGA and TPSS meta-GGA have orret seond-order gradient oeÆients fororrelation.6 The TPSS meta-GGA has orret gradientoeÆients for exhange through fourth order in r.72,73LSD, PBE GGA, and TPSS meta-GGA all have a rea-sonable linear response54 for the uniform eletron gas,although this is ahieved in PBE GGA by using a seond-order gradient oeÆient for exhange that is too big bya fator of 1.778.For any one-eletron density n1(r), we know that74Ex[n1; 0℄ = �U [n1℄� �12 Z d3r Z d3r0 n1(r)n1(r0)jr0 � rj ; (18)E[n1; 0℄ = 0: (19)In other words, the exhange energy of a fully spin-polarized one-eletron system is a self-interation orre-tion to the Hartree-energy, and the orrelation energy forsuh a system vanishes. Beause the right hand side ofEq. (18) is a fully nonloal funtional of the density, thisonstraint annot be satis�ed on the �rst three rungsof Jaob's ladder, although it an be satis�ed on thefourth rung by hyper-GGAs that use full exat exhange.Eq. (19) annot be satis�ed on the �rst two rungs, but issatis�ed by the TPSS meta-GGA on the third rung.The exat exhange potential, vx�(r) = ÆEx=Æn�(r),at the nulear usp of the eletron density is �nite.75This ondition, satis�ed by LSD, is neessarily lost inGGA, but is restored in the TPSS meta-GGA. The regionaround the nuleus is one in whih the density is domi-nated by a single orbital shape and the redued densitygradient s = jrnj=2(3�2)1=3n4=3 is small; these ondi-tions an also hold simultaneously near the enters ofhemial bonds.As a onsequene of Eqs. (15) and (17), the high-density ( ! 1) limit of Ex[n"; n#℄ is the exat ex-hange energy Ex[n"; n#℄. This ondition an be satis�edon the fourth rung of Jaob's ladder by hyper-GGAs thatuse full exat exhange. And so for that matter will anyonstraint on the exhange energy.

There are also known onstraints for non-uniform density saling,76 whether two-dimensionalnxy (x; y; z) = 2n(x; y; z) or one-dimensionalnx(x; y; z) = n(x; y; z), whih in the limit  ! 1an produe a rossover from a three- to a one- ortwo-dimensional eletron density, respetively.77Exept in the one-eletron and high-density limits, themost long-ranged parts of the exat exhange and or-relation holes tend to anel,78 making Ex[n"; n#℄ lessstrongly nonloal than Ex[n"; n#℄. Thus it is unaept-able to ombine exat exhange with meta-GGA orrela-tion. Exat exhange an only be ombined with a fullynonloal orrelation, onstruted on the fourth or �fthrungs of the ladder.VII. SELF-INTERACTION CORRECTION OFSEMI-LOCAL FUNCTIONALS, AND HOW TOIMPROVE ITThe semi-loal density funtionals on the �rst threerungs of Jaob's ladder violate Eq. (18) and those on the�rst two rungs also violate Eq. (19). Simple funtionalsthat work well for many-eletron systems annot be exatfor one-eletron systems. This problem was evident longago within LSD, and led Perdew and Zunger74 to proposea self-interation orretion (SIC) to LSD or any otherdensity funtional approximation (DFA):ESIC-DFAx [n"; n#℄ = EDFAx [n"; n#℄� o:Xi� �U [~ni� ℄ +EDFAx [~ni� ; 0℄� ; (20)where ~ni�(r) = j~�i�(r)j2 is the density of an oupiedorbital (in general, not a Kohn{Sham orbital but somemore loalized orbital onstruted to minimize the self-interation orreted energy). The SIC of Eq. (20) prop-erly vanishes when the original density funtional approx-imation is exat. This feature seems to be absent from areently proposed alternative self-interation orretionto the one-eletron potential.79,80The Perdew{Zunger SIC has a long history of strikingsuesses and failures.81{83 It appears that elimination ofself-interation error is often important, but that Eq. (20)is not neessarily the best way to ahieve this. In hem-ial appliations, for example, the GGA seems to needonly about 40%84 of the self-interation orretion pre-sented in Eq. (20) (although a simple saling by 0.4 pro-dues a funtional that is no longer exat for one-eletrondensities). The results of SIC alulations of reation bar-riers show us that a saling fator of 0.5{0.7 is needed, de-pending on the reation type and funtional.66,85 A sys-temati thermohemial study86 shows that the Perdew{Zunger SIC indeed overorrets beyond-LSD funtionals.There are also formal problems with Eq. (20). If we�nd loalized orbitals for a uniform density, our SIC fun-tional will no longer be exat in the uniform or slowly-varying density limit. But if we �nd deloalized orbitals



7for a uniform density, then Eq. (20) will produe a \falsesurfae energy"81 for any �nite jellium system.An alternative self-interation orretion87 that avoidsthese formal diÆulties while saling down the self-interation orretion for many-eletron densities isfound by introduing an e�etive orbital density at r0for an eletron of spin � at r, i.e.,nr�(r0) � �n�x(r; r0); (21)where n�x(r; r0) is the exat exhange hole density, andnoting that 0 � �W� =�� � 1, where �� is de�ned byEq. (10) and �W� = jrn� j2=8n� is the von Weizs�akerkineti energy density:ESIC-DFAx [n"; n#℄ = EDFAx [n"; n#℄ (22)�X� Z d3r��W��� �k n�(r)�U [nr� ℄ +EDFAx [nr� ; 0℄	 ;whereU [nr� ℄ = 12 Z d3r0 Z d3r00 nr�(r0)nr�(r00)jr00 � r0j (23)and EDFAx [nr� ; 0℄ involves integration over r0. For anyone-eletron density of spin �, �W� =�� = 1 and nr�(r0) =n�(r0) = n(r0). To preserve the orret slowly-varyinglimit requires k � 3 when the DFA is the TPSS meta-GGA. Within TPSS, the orrelation ontribution toEq. (22) vanishes. We must have k � 2 for the PBEGGA and k � 1 for LSD.Beause nr�(r0) of Eq. (21), n�(r), and ��(r) are in-variant under a unitary transformation of the oupiedorbitals, no loalizing transformation is needed in theimplementation of the SIC-DFA of Eq. (22). More-over, the e�etive one-eletron Hamiltonian (with a non-multipliative potential) for Eq. (22) is self-adjoint andits anonial orbitals are orthonormal. Although Eq. (22)may not be easy to implement, it has these interest-ing and promising formal properties in ommon with themeta- and hyper-GGAs.Why think about a self-interation orretion to themeta-GGA when the hyper-GGA will be exat for anyone-eletron density? One answer is that the Perdew{Zunger SIC of Eq. (20) provides a nearly orret de-sription of frational partile number in a many-eletronopen system,88 and this good desription is not guaran-teed in the hyper-GGA, whih ould thereby fail (likeLSD, GGA and meta-GGA) to desribe harge transferorretly. VIII. OTHER ISSUESA good density funtional for the exhange-orrelationenergy should produe a realisti integrated energy anda realisti eletron density. There is no reason to expetit to produe any given energy density, sine the energydensity is neither physial nor unique, although it an be

useful for other purposes.89{91 Energy density may be anissue for loal hybrids60 and hyper-GGAs.10,59There is also no reason to expet the Kohn{Shamdeterminant to display all the symmetries of the truewave funtion. Symmetry breaking in the spin densi-ties is more disturbing,92 but often has a simple physialinterpretation.93 Nor does a good density funtional needto produe the spin resolution of the orrelation energyinto "", ##, and "# ontributions. In fat, a widely-usedspin resolution is inorret94 in the uniform-density limit.An interesting reent development is the appearaneof tratable nonloal density funtionals that inlude thelong-range van der Waals interation.95 It remains to beseen if those funtionals an be merged with the variousfuntionals on the �rst four rungs of Jaob's ladder.We also note in passing that the orbitals that min-imize the meta-GGA energy belong to a self-adjointbut non-multipliative e�etive one-eletron Hamilto-nian. However, it seems to make little energeti di�er-ene if one uses instead a multipliative optimized e�e-tive potential96,97 or even the PBE GGA potential. Atthe same time, proper inlusion of exat exhange intothe Kohn{Sham sheme via a multipliative potentialgreatly improves the auray of single-partile spetra98and is expeted to be important for time-dependent andexited-state appliations.IX. CONCLUSIONSWe have argued that density funtional approxima-tions should be onstruted nonempirially via the satis-fation of known exat onstraints (valid for all densitiesor for a large lass of them), and that the uniform densitylimit in partiular is a logially required onstraint. Werealize that this nonempirial onstrution is a slow andunertain proess, and that for ertain systems and prop-erties the users will want to employ semiempirial or �t-ted funtionals. In suh ases, we reommend funtionalsthat are orret for the uniform eletron gas and ontainfew �tted parameters, suh as the PBE0 or TPSSh hy-brids. Even then, we believe that results should also bereported for the nonempirial funtionals like LSD, PBEGGA, and TPSS meta-GGA, as a measure of how muhwe really understand and what remains to be understood.We lose with some general \do's and don't's". Soft-ware developers should take are to program and dou-ment density funtionals orretly, and to update theirodes with signi�ant new funtionals. Superseded fun-tionals (in the sense that PW8632,33 and PW9134 are su-perseded by PBE9) should be allowed to retire gradually.Users should not randomly mix and math funtionals,but should use exhange and orrelation piees designedto work together, with their designer-reommended lo-al parts. They should not shop indisriminately for thefuntional that \works best". Users should always saywhih funtional they used, with its proper name andliterature referene, and why they hose it. Statements



8like \we used density funtional theory" or \we used thegeneralized gradient approximation" are almost uselessto a reader or listener who wants to reprodue the re-sults. AknowledgmentsWe thank Filipp Furhe for the Wordsworth quota-tion. This work was supported by the National Siene
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