Supplementary Information

to accompany

"Restoring the density-gradient expansion for exchange in solids and surfaces"

by

John P. Perdew, Adrienn Ruzsinszky, Gábor I. Csonka, Oleg A. Vydrov, Gustavo E. Scuseria, Lucian A. Constantin, Xiaolan Zhou, and Kieron Burke

Physical Review Letters

(Dated: March 27, 2008)

Fig. S1. Exchange-only enhancement factors $F_x(s)$ in the range $0 \le s \le 1$ for the gradient expansion (GE) and for the generalized gradient approximations PBE, AM05 (Ref. [12]), and PBEsol. AM05 and LAG (Ref. [11]) exchange are based on the Airy gas model, proposed as a paradigm by W. Kohn and A.E. Mattsson, Phys. Rev. Lett. **81**, 3487 (1998). A similar figure for $F_x(s)$ comparing Wu-Cohen (Ref. [6]) and PBE is given in Fig. 1 of Ref. [6].

Fig. S2. Enhancement factor of the generalized gradient approximation AM05 (Ref. [12]), for comparison with those of PBE and PBEsol in Fig. 2 of our article. For s<3, AM05 is more "local" in the $r_s \rightarrow 0$ or exchange-only limit, but it shows more similarity to PBEsol in the range $1 \le r_s \le 10$ and $s \le 1$ relevant to valence electrons in many solids. For an even more diminished gradient dependence, see Fig. 1 of G.I. Csonka, O.A. Vydrov, G.E. Scuseria, A. Ruzsinszky, and J.P. Perdew, J. Chem. Phys. **126**, 244107 (2007).

Fig. S3. Ratios of approximate to exact surface exchange energies of jellium, calculated on LSDA densities with the functionals of our article plus LAG (Ref. [11]) and AM05 (Ref. [12]). Note the remarkable accuracy of PBEsol over the whole range of bulk densities $2 < r_s < 6$. Wu-Cohen values, from Table VI of Ref. [6], are slightly less accurate than TPSS values. Exact exchange values from J.M. Pitarke and A.G. Eguiluz, Phys. Rev. B **63**, 045116 (2001). Interpolation on r_s by the formula of L.M. Almeida, J.P. Perdew, and C. Fiolhais, Phys. Rev. B **66**, 075115 (2002).

Solid	LSDA	PBE	TPSS	PBEsol	Expt-ZPAE
Li	3.383	3.453	3.475	3.453	3.451
Na	4.049	4.199	4.233	4.159	4.210
Κ	5.093	5.296	5.362	5.232	5.212
Al	4.008	4.060	4.035	4.038	4.020
С	3.537	3.579	3.579	3.562	3.556
Si	5.410	5.479	5.466	5.442	5.423
SiC	4.355	4.404	4.394	4.381	4.349
Ge	5.634	5.776	5.744	5.693	5.646
GaAs	5.626	5.772	5.745	5.687	5.643
NaCl	5.471	5.696	5.696	5.611	5.580
NaF	4.505	4.700	4.706	4.633	4.594
LiCl	4.968	5.146	5.113	5.072	5.090
LiF	3.904	4.063	4.026	4.002	3.987
MgO	4.178	4.270	4.247	4.229	4.197
Cu	3.530	3.635	3.593	3.578	3.596
Rh	3.791	3.871	3.846	3.819	3.793
Pd	3.851	3.950	3.917	3.888	3.877
Ag	3.997	4.129	4.076	4.045	4.064

Table SI. Equilibrium lattice constants (Å) of our 18 test solids. For error summaries, see Table I of our article. The zero-point anharmonic expansion (ZPAE) was subtracted from the experimental zero-temperature values (Ref. [28]). For C, Si, SiC, Ge, GaAs, and MgO, the basis sets were taken from J. Heyd, J.E.Peralta, G.E.Scuseria, and R. L. Martin, J. Chem. Phys. **123**,174101 (2005). For the rest of the solids, the basis sets and effective core potentials from Ref. [28] were used. For AM05 (Ref. [12]) lattice constants, see <u>http://dft.sandia.gov/functionals/AM05.html</u>. Very recent tests of AM05 have been made by A.E. Mattsson, R. Armiento, J. Paier, G. Kresse, J.M. Wills, and T.R. Mattsson, J. Chem. Phys. **128**, 084714 (2008). For Wu-Cohen (Ref. [6]) lattice constants, see Refs. [6] and [13]. (These other studies do not correct the experimental value for ZPAE.)

	LSDA	PBE	TPSS	PBEsol	EXP
SiH4	15.04	13.58	14.47	14.04	13.98
SiO	9.70	8.49	8.1	8.89	8.33
S2	8.82	4.98	4.71	5.36	4.41
C3H4	34.78	31.27	30.68	32.52	30.56
C2H2O2	32.74	28.84	27.58	30.27	27.46
C4H8	56.54	50.63	50.11	52.84	49.82

Table SII. Atomization energies (eV) of the six AE6 molecules of Ref. [29]. For error summaries, see Table II of our article. AM05 (Ref. [12]) values could not be computed, since a spin-polarized version of AM05 has not been published. Wu-Cohen (Ref. [6]) atomization energies are given in Ref. [13].

	LSDA	-	PBEsol	PBE
М	0	0.12346	0.12346	0.21951
В	0	0.06673	0.046	0.06673
r _s =2	3354	3493	3374	3265
$r_s=3$	764	813	774	741
$r_s=4$	261	286	267	252
r _s =6	53	63	56	52

Table SIII. Surface exchange-correlation energy σ_{xc} (in erg/cm²) for jellium with bulk density parameter r_s, as a function of the exchange gradient coefficient μ and the correlation gradient coefficient β in the PBE form. The proper coefficients for the gradient expansion are μ = 0.12346 and (in the high-density limit) β =0.06673. In the random phase approximation (RPA), β is nearly independent of r_s. Beyond RPA, β is 0.06673 at r_s=0, but around 0.059 at r_s=3 and 0.051 at r_s=6 (C.D. Hu and D.C. Langreth, Phys. Rev. B **33**, 943 (1986)).

	LSDA	-	PBEsol	PBE
μ	0	0.12346	0.12346	0.21951
β	0	0.06673	0.046	0.06673
Na	4.049	4.196	4.159	4.199
Si	5.410	5.431	5.442	5.479
MgO	4.178	4.229	4.229	4.270
Pd	3.851	3.879	3.888	3.950
ME	-0.055	0.007	0.003	0.048
MAE	0.055	0.014	0.028	0.053

Table SIV. Bulk lattice constant *a* (in Angstrom) for four solids, as a function of the exchange gradient coefficient μ and the correlation gradient coefficient β in the PBE form. The difference between PBE and LSDA lattice constants is believed to arise largely in a higher-density region of core-valence overlap (M. Fuchs, M. Bockstedte, E. Pehlke, and M. Scheffler, Phys. Rev. B **57**, 2134 (1998)). Note that restoring the gradient expansion for exchange in the PBE form is *by itself* sufficient to correct the too-long PBE lattice constants, without fitting the surface energy.