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Abstract

We present an overview on the application of our semiempirical ‘neglect of diatomic differential overlap fragment self-
consistent field” method to the Monte Carlo simulation of amorphous carbon and silicon. The covalent model is partitioned into
a relatively small subsystem treated at the conventional molecular orbital level and an environment perturbed by the former.
The wave function is expanded either on a Slater-type atomic orbital or on a hybrid orbital basis set, and a self-consistent field
calculation is made for the subsystem in the field of the iteratively determined electronic distribution of the environment. For
energy calculation of the infinite amorphous systems a Monte Carlo version of the fragment self-consistent field method has
been developed. Radial and angular distribution functions, obtained for amorphous silicon, are in good agreement with
experiment. We calculated the same quantities for amorphous carbon with a hypothetical 100% sp” hybridization, but these
cannot be compared directly to experiment. © 1997 Elsevier Science B.V.
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1. Introduction

Partitioning of large covalent molecules into a sub-
system, where essential chemical changes take place
and which is described in terms of the molecular orbi-
tal theory, and an environment, treated at a simpler
level, was first proposed by Warshel and Levitt in
their classical paper on lysozyme [1]. In the same
year we proposed the use of strictly localized mole-
cular orbitals (SLMO) for the treatment of very large
covalent systems [2]. We combined these two ideas in
the framework of the semiempirical complete neglect
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of differential overlap (CNDO/2) approximation and
we formulated the fragment self-consistent field
(FSCF) method that was applied to the conforma-
tional analysis of the chymotrypsin active site [3,4].
Since then, quantum mechanical/molecular mechan-
ical (QM/MM) hybrid methods have been developed
on the basis of subsystem/environment partitioning
where the subsystem is treated by an ab initio [5,6]
or semi-empirical [7—9] molecular orbital method or
by density functional theory [10,11], while the envir-
onment is described in terms of molecular mechanics.

The drawback of hybrid QM/MM metheods is the pro-
blem with the definition of the subsystem/environment
boundary. In QM/MM simulations of amorphous sys-
tems the dangling bonds should be closed by hydrogen
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atoms in order to provide a classical closed-shell sub-
system that is appropriate for molecular orbital calcula-
tions. The FSCF approach is similar to the combined
QM/MM method but solves the partition problem in a
natural way by expanding the total wave function on a
basis of SLMOs. Recently we formulated this method at
the neglect of diatomic differential overlap (NDDO)
level, with both the AMI [12-14] and PM3 [15,16]
parametrizations, and applied this version to small mole-
cules [13,14], enzymes [17] and condensed systems,
where we derived an extension to Monte Carlo simula-
tions [16,18]. In the following, we outline basic features
of the method and present results of the statistical simu-
lation of amorphous materials, carbon and silicon.

2. Method
2.1. Basic equations

The method is described in Ref. [13] in detail and
here only its main features are recapitulated. The same
way as we build up molecules from more or less
transferable chemical bonds, we put together the
wave function from two-centre ¢, one-centre lone-
pair and many-centre = SLMOs obtained as combina-
tions of atomic hybrid orbitals (HYOs). The ith HYO
on atom A in the ath SLMO has the following form:

_ns ns npx . npx npy  npy npz npz
ing=Dagity +h, Uy +h u," +b, uy, 0))
where uy,u",..., are atomic Slater-type orbitals with

principal quantum number n and the appropriate sym-
metry. For example, o-type SLMO involves two
atomic centres and represents the bond between
these atoms. HYOs of such an SLMO are directed
toward each other. According to the applied NDDO
approximation, HYOs centred on different atoms do
not overlap. To achieve orthogonality of HYOs
centred on the same atom, they are L&wdin-orthogo-
nalized [19] in order to obtain the b coefficients in Eq.
(1). The HYO coefficients within SLMOs are
obtained by solving a set of coupled secular equations
which involve a simplified Fockian of the following
form (o and B stand for an SLMO):

Fy=H;+ iPyiilin+ X Pyl jj)
H#Fieo

+ Y X Pyliilkk), iea
B(#a) kel

Fy=Hy— 3P(iil jj), i.jea, i # ] (2)

Fy =0, iea, keB, o # 3

The core hamiltonian, H, and the density matrix, P, are
block diagonal. The differential overlap of orbitals / and
J is nonzero only if they belong to the same SLMO.

The subsystem, S, is defined as the place where the
chemical event (in this case displacement of a parti-
cle) takes place. Its Hamiltonian is similar to that used
in conventional MNDO calculations except for a per-
turbation term in the Fockian originating from the
environment, E. A further specificity is that all calcu-
lations are done on a hybrid orbital basis:

Fi=H;+ I Py [(ijlkD) — Yl lkj)] + 2 X Pudijlkk)

—1 X T Pylillk. (3)
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2.2. Monte Carlo simulation

Subsystem/environment partition is shown schema-
tically in Fig. 1.
The periodic cubic box contained 216 atoms with a

number density of 50 and 153 nm™ and subsystem

radii of 480 and 330 pm for a-Si and a-C, respectively.

Fig. 1. Schematic representation of the definition of S and £ for the
Wooten model of a-Si.
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The AM1 and PM3 semiempirical parametrizations
were used for a-C and the PM3 one for a-Si. The
starting configuration was a distorted version of the
Wooten model [20]. It has only tetracoordinated sili-
con atoms, which means that in the first approxima-
tion exclusively o-type SLMOs were used to construct
the wave function both for the environment and the
subsystem. The distortion was performed by a con-
strained hard-sphere Monte Carlo procedure in which
a coordination number constraint of 4 was applied.
Equilibrium was reached in approximately 10000
steps, whereas the radial distribution functions and
cosine distributions were calculated over the next
30 000-40 000 steps.

At the beginning of the calculations we evaluated
all integrals for the first SCF approximation, then
solved the coupled, typically 2 x 2 secular equations
of Eq. (2) for the whole system. For each Monte Carlo
step we chose a particle and defined the subsystem
around it, then evaluated the integrals for the sub-
system without moving the particle and solved the
SCF equations of Eq. (3). Afterwards, we displaced
the particle, recalculated the changed integrals, and
solved the equations of Eq. (2) for the whole system
and then the equations of Eq. (3) for the subsystem.
The Metropolis criterion was applied to accept or
reject the new configuration. If the step was not
successful, we returned to the old configuration for a
new trial. Since we needed to calculate only integrals
containing displaced atomic centres and most of the
HYO coefficients did not change drastically, a con-
siderable amount of computational work could be
saved. More details about the method and its appli-
cation to amorphous silicon can be found in the
original publication [16].

3. Results and discussion

Distribution functions for a-Si and a-C are dis-
played in Figs. 2 and 3. As is seen from Figs. 2a
and 3a, our simulations on a-Si are in excellent agree-
ment both with the results obtained from the original
Wooten model and with those from a reverse Monte
Carlo (RMC) calculation [21] based on experimental
data [22]. A coordination number constraint of 4 was
applied in the RMC simulation. The first sharp peak
on the radial distribution function is at 235 pm,
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Fig. 2. Radial distribution functions: (a) a-Si; (b) a-C. It is important
to notice that the g(r) functions provided by the FSCF Monte Carlo
method are continuous and smooth at the S/E boundary (480 and
330 pm, respectively).

exactly the same as the experimental Si—Si single-
bond length, indicating that in a-Si nearly all silicon
atoms participate in undistorted single bonds. The
peak on the angular distribution function is around
the tetrahedral value, 104.5°.

It is more complicated to compare our results for
a-C with experiment. As is known, it is very difficult
to provide a-C samples with 100% sp’-hybridized
carbon atoms; up to now the maximum percentage
reached is around 80 [23,24]. A further problem is
that samples contain voids, dislocations and impurities,
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Fig. 3. Cosine distribution functions: (a) Si-Si-Si angles in a-Si; (b)
C—C—C angles in a-C. The maximal distances of two atoms forming
a common SLMO were defined to be 270 pm for a-Si and 200 pm
for a-C.

therefore the density cannot be determined unequivo-
cally (see tables in Ref. [25]). Thus, simulations and
experiments provide incomparable results. While the
radial distribution function obtained by the FSCF
Monte Carlo method has a sharp peak at 157 pm,
only 3 pm larger than the experimental value for the
CC single bond (154 pm), other calculations and
experiments [25,26] yield 142-150 pm, sometimes
close to the length of the CC bond in graphite
(142 pm), due to the high percentage of tricoordinated
carbon atoms in the samples. The a-C RMC results [26]

shown in Figs. 2 and 3 are provided by a simulation
based on the experiment of Ref. [24]. A coordination
number constraint of 4 was applied in this RMC
calculation.

Finally, we can draw some conclusions. Since our
results on amorphous silicon are in good agreement
with experiment, the calculation on amorphous
carbon may correctly describe the structure of the
currently hypothetical 100% sp3 a-C. We hope that
experiment will provide such samples in the near
future to test our calculations.
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