The Y atomic orbitals of hydrogen like (one electron) atoms and ions in 3D space

Cartesian coordinates expressed with spherical coordinates :

x = r sin(q) cos(f),
y = r sin(
q) sin(f), 
z = r cos(
q).

 Separation of the coordinates: .

Radial part of Y(r,q,f) Rn,l(r) (it depends on two quantum numbers n and l; it is a real function),

Angular part of Y(r,q,f): Yl,m(q,f) (it depends on two quantum numbers l and m; it can be a real or complex function).

Y(r,q,f) = Rn,l(r).Yl,m(q,f)

 The r is expressed in atomic distance unit (bohr). Conversion to SI units: 1 bohr = 52.918 pm. Generalization for arbitrary Z atomic number: replace the r by r.Z  in Rn,l(r), and multiply by  Z(3/2+l).

Quantum numbers

Atomic orbital
notation +
VRML

Radial part
Rn,l(r)

Angular Yl,m(q,f)

R2n,l(r) 4pr2Y2(r)

n

l

m

real

complex

1

0

0

1s

2e-r

  4e-2r

fig.

2

0

0

2s

   

fig.

2

1

0

2pz

     

2

1

(±1)

2px,y

e±if    

3

0

0

3s

   

fig.

3

1

0

3pz

     

3

1

(±1)

3px,y

,

e±if    

3

2

0

3dz2

     

3

2

(±1)

3dxz,yz

,

e±if    

3

2

(±2)

3dxy, x2-y2

,

e±2if    

4

0

0

4s

     

4

1

0

4pz

     

4

1

(±1)

4px,y

e±if    

4

2

0

4dz2

     

4

2

(±1)

4dxz,yz

e±if    

4

2

(±2)

4dxy, x2-y2

e±2if    

 4

 3  0

 4fz3

         

Copyright Csonka Gábor István, BME